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ABSTRACT
We present CounterfactualExplanations.jl: a package
for generating Counterfactual Explanations (CE) and Algorithmic
Recourse (AR) for black-box models in Julia. CE explain how inputs
into a model need to change to yield specific model predictions.
Explanations that involve realistic and actionable changes can be
used to provide AR: a set of proposed actions for individuals to
change an undesirable outcome for the better. In this article, we
discuss the usefulness of CE for Explainable Artificial Intelligence
and demonstrate the functionality of our package. The package is
straightforward to use and designed with a focus on customization
and extensibility. We envision it to one day be the go-to place for
explaining arbitrary predictive models in Julia through a diverse
suite of counterfactual generators.
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1. Introduction
Machine Learning models like Deep Neural Networks have become
so complex and opaque over recent years that they are generally
considered black-box systems. This lack of transparency exacer-
bates several other problems typically associated with these models:
they tend to be unstable [11], encode existing biases [7] and learn
representations that are surprising or even counter-intuitive from a
human perspective [7]. Nonetheless, they often form the basis for
data-driven decision-making systems in real-world applications.
As others have pointed out, this scenario gives rise to an undesirable
principal-agent problem involving a group of principals—i.e. human
stakeholders—that fail to understand the behaviour of their agent—
i.e. the black-box system [6]. The group of principals may include
programmers, product managers and other decision-makers who
develop and operate the system as well as those individuals ultimately
subject to the decisions made by the system. In practice, decisions
made by black-box systems are typically left unchallenged since the
group of principals cannot scrutinize them:

“You cannot appeal to (algorithms). They do not listen.
Nor do they bend.” [27]

In light of all this, a quickly growing body of literature on Explainable
Artificial Intelligence (XAI) has emerged. Counterfactual Explana-
tions fall into this broad category. They can help human stakeholders
make sense of the systems they develop, use or endure: they explain
how inputs into a system need to change for it to produce differ-

ent decisions. Explainability benefits internal as well as external
quality assurance. Explanations that involve plausible and action-
able changes can be used for Algorithmic Recourse (AR): they offer
the group of principals a way to not only understand their agent’s
behaviour but also adjust or react to it.
The availability of open-source software to explain black-box models
through counterfactuals is still limited. Through the work presented
here, we aim to close that gap and thereby contribute to broader
community efforts towards XAI. We envision this package to one day
be the go-to place for Counterfactual Explanations in Julia. Thanks to
Julia’s unique support for interoperability with foreign programming
languages we believe that this library may also benefit the broader
machine learning and data science community.
Our package provides a simple and intuitive interface to generate
CE for many standard classification models trained in Julia, as well
as in Python and R. It comes with detailed documentation involving
various illustrative example datasets, models and counterfactual
generators for binary and multi-class prediction tasks. A carefully
designed package architecture allows for a seamless extension of the
package functionality through custom generators and models.
The remainder of this article is structured as follows: Section 2
presents related work on XAI as well as a brief overview of the
methodological framework underlying CE. Section 3 introduces
the Julia package and its high-level architecture. Section 4 presents
several basic and advanced usage examples. In Section 5 we demon-
strate how the package functionality can be customized and extended.
To illustrate its practical usability, we explore examples involving
real-world data in Section 6. Finally, we also discuss the current
limitations of our package, as well as its future outlook in Section 7.
Section 8 concludes.

2. Background and related work
In this section, we first briefly introduce the broad field of Explainable
AI, before narrowing it down to Counterfactual Explanations. We
introduce the methodological framework and finally point to existing
open-source software.

2.1 Literature on Explainable AI
The field of XAI is still relatively young and made up of a variety of
subdomains, definitions, concepts and taxonomies. Covering all of
these is beyond the scope of this article, so we will focus only on high-
level concepts. The following literature surveys provide more detail:
Arrieta et al. (2020) provide a broad overview of XAI [3]; Fan et
al. (2020) focus on explainability in the context of deep learning [10];
and finally, Karimi et al. (2020) [17] and Verma et al. (2020) Verma,
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Dickerson, and Hines [40] offer detailed reviews of the literature on
Counterfactual Explanations and Algorithmic Recourse (see also
Molnar [25] and Varshney [39]). Miller (2019) explicitly discusses
the concept of explainability from the perspective of a social scientist
[24].
The first broad distinction we want to make here is between In-
terpretable and Explainable AI. These terms are often used inter-
changeably, but this can lead to confusion. We find the distinction
made in Rudin [32] useful: Interpretable AI involves models that
are inherently interpretable and transparent such as general additive
models (GAM), decision trees and rule-based models; Explainable
AI involves models that are not inherently interpretable but require
additional tools to be explainable to humans. Examples of the lat-
ter include Ensembles, Support Vector Machines and Deep Neural
Networks. Some would argue that we best avoid the second cate-
gory of models altogether and instead focus solely on interpretable
AI Rudin [32]. While we agree that initial efforts should always
be geared towards interpretable models, avoiding black boxes alto-
gether would entail missed opportunities and anyway is probably not
very realistic at this point. For that reason, we expect the need for
XAI to persist in the medium term. Explainable AI can further be
broadly divided into global and local explainability: the former is
concerned with explaining the average behaviour of a model, while
the latter involves explanations for individual predictions [25]. Tools
for global explainability include partial dependence plots (PDP),
which involve the computation of marginal effects through Monte
Carlo, and global surrogates. A surrogate model is an interpretable
model that is trained to explain the predictions of a black-box model.
Counterfactual Explanations fall into the category of local methods:
they explain how individual predictions change in response to indi-
vidual feature perturbations. Among the most popular alternatives
to Counterfactual Explanations are local surrogate explainers includ-
ing Local Interpretable Model-agnostic Explanations (LIME) and
Shapley additive explanations (SHAP). Since explanations produced
by LIME and SHAP typically involve simple feature importance
plots, they arguably rely on reasonably interpretable features at the
very least. Contrary to Counterfactual Explanations, for example, it
is not obvious how to apply LIME and SHAP to high-dimensional
image data. Nonetheless, local surrogate explainers are among the
most widely used XAI tools today, potentially because they are easy
to interpret and implemented in popular programming languages.
Proponents of surrogate explainers also commonly mention that
there is a straightforward way to assess their reliability: a surrogate
model that generates predictions in line with those produced by the
black-box model is said to have high fidelity and therefore consid-
ered reliable. As intuitive as this notion may be, it also points to
an obvious shortfall of surrogate explainers: even a high-fidelity
surrogate model that produces the same predictions as the black-box
model 99 per cent of the time is useless and potentially misleading
for every 1 out of 100 individual predictions.
A recent study has shown that even experienced data scientists tend
to put too much trust in explanations produced by LIME and SHAP
[19]. Another recent work has shown that both methods can be easily
fooled: they depend on random input perturbations, a property that
can be abused by adverse agents to essentially whitewash strongly
biased black-box models [35]. In related work, the same authors
find that while gradient-based Counterfactual Explanations can also

be manipulated, there is a straightforward way to protect against
this in practice [34]. In the context of quality assessment, it is also
worth noting that—contrary to surrogate explainers—CE always
achieve full fidelity by construction: counterfactuals are searched
with respect to the black-box classifier, not some proxy for it. That
being said, CE should also be used with care and research around
them is still in its early stages.

2.2 A framework for Counterfactual Explanations
Counterfactual search involves feature perturbations: we are inter-
ested in understanding how we need to change individual attributes
in order to change the model output to a desired value or label [25].
Typically the underlying methodology is presented in the context of
binary classification: M : X 7→ Y where X ⊂ RD and Y = {0, 1}.
Further, let t = 1 be the target class and let x denote the factual
feature vector of some individual sample outside of the target class,
so y = M(x) = 0. We follow this convention here, though it should
be noted that the ideas presented here also carry over to multi-class
problems and regression [25].
The counterfactual search objective originally proposed by Wachter,
Mittelstadt, and Russell [41] is as follows

min
x′∈X

h(x′) s. t. M(x′) = t (1)

where h(·) quantifies how complex or costly it is to go from the
factual x to the counterfactual x′. To simplify things we can re-
state this constrained objective as the following unconstrained and
differentiable problem:

x′ = argmin
x′

ℓ(M(x′), t) + λh(x′) (2)

Here ℓ denotes some loss function targeting the deviation between
the target label and the predicted label and λ governs the strength
of the complexity penalty. Provided we have gradient access for
the black-box model M the solution to this problem can be found
through gradient descent. This generic framework lays the founda-
tion for most state-of-the-art approaches to counterfactual search
and is also used as the baseline approach in our package. The hy-
perparameter λ is typically tuned through grid search or in some
sense pre-determined by the nature of the problem. Conventional
choices for ℓ include margin-based losses like cross-entropy loss and
hinge loss. It is worth pointing out that the loss function is typically
computed with respect to logits rather than predicted probabilities, a
convention that we have chosen to follow.1
Numerous extensions to this simple approach have been developed
since CE were first proposed in 2017 (see Verma, Dickerson, and
Hines [40] and Karimi et al. [17] for surveys). The various approaches
largely differ in that they use different flavours of search objective
defined in Equation 2. Different penalties are often used to address
many of the desirable properties of effective CE that have been set out.
These desiderata include: proximity — the distance between factual

1Implementations of loss functions with respect to logits are often numeri-
cally more stable. For example, the logitbinarycrossentropy(ŷ, y)
implementation in Flux.Losses (used here) is more stable than the mathe-
matically equivalent binarycrossentropy(ŷ, y).
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and counterfactual features should be small [41]; actionability —
the proposed recourse should be actionable [38, 31]; plausibility —
the counterfactual explanation should be plausible to a human [14,
33]; sparsity — the counterfactual explanation should involve as
few individual feature changes as possible [33]; robustness — the
counterfactual explanation should be robust to domain and model
shifts [37]; diversity — ideally multiple diverse counterfactuals
should be provided [26]; and causality — counterfactuals should
respect the structural causal model underlying the data generating
process [18, 16].
Beyond gradient-based counterfactual search, which has been the
main focus in our development so far, various methodologies have
been proposed that can handle non-differentiable models like deci-
sion trees. We have implemented some of these approaches and will
discuss them further in Section 3.2.

2.3 Existing software
To the best of our knowledge, the package introduced here provides
the first implementation of Counterfactual Explanations in Julia and
therefore represents a novel contribution to the community. As for
other programming languages, we are only aware of one other uni-
fying framework: the Python library CARLA [29].2 In addition to
that, there exists open-source code for some specific approaches to
CE that have been proposed in recent years. The approach-specific
implementations that we have been able to find are generally well-
documented, but exclusively in Python. For example, a PyTorch
implementation of a greedy generator for Bayesian models proposed
in Schut et al. [33] has been released. As another example, the pop-
ular InterpretML library includes an implementation of a diverse
counterfactual generator [26].
Generally speaking, software development in the space of XAI has
largely focused on various global methods and surrogate explain-
ers: implementations of PDP, LIME and SHAP are available for
both Python (e.g. lime, shap) and R (e.g. lime, iml, shapper,
fastshap). In the Julia space, there exist two packages related to
XAI: firstly, ShapML.jl, which provides a fast implementation of
SHAP; and, secondly, ExplainableAI.jl, which enables users to
easily visualise gradients and activation maps for Flux.jl models.
We also should not fail to mention the comprehensive Interpretable
AI infrastructure, which focuses exclusively on interpretable models.
Arguably the current availability of tools for explaining black-box
models in Julia is limited, but it appears that the community is
invested in changing that. The team behind MLJ.jl, for example,
recruited contributors for a project about both Interpretable and
Explainable AI in 2022.3 With our work on Counterfactual Explana-
tions we hope to contribute to these efforts. We think that because
of its unique transparency the Julia language naturally lends itself
towards building Trustworthy AI systems.

2While we were writing this paper, the R package counterfactuals was
released [8]. The developers seem to also envision a unifying framework, but
the project appears to still be in its early stages.
3For details, see the Google Summer of Code 2022 project proposal: https:
//julialang.org/jsoc/gsoc/MLJ/#interpretable_machine_learning_in_julia.

3. Introducing: CounterfactualExplanations.jl
Figure 1 provides an overview of the package architecture. It is built
around two core modules that are designed to be as extensible as
possible through dispatch: 1) Models is concerned with making any
arbitrary model compatible with the package; 2) Generators is used
to implement counterfactual search algorithms. The core function of
the package—generate_counterfactual—uses an instance of
type <:AbstractFittedModel produced by the Models module
and an instance of type <:AbstractGenerator produced by the
Generators module. Relating this to the methodology outlined in
Section 2.2, the former instance corresponds to the model M , while
the latter defines the rules for the counterfactual search (Equation 2).

Fig. 1: High-level schematic overview of package architecture. Modules are
shown in red, structs in green and functions in purple.

3.1 Models
The package currently offers native support for models built and
trained in Flux [13] as well as a small subset of models made available
through MLJ [5]. While in general it is assumed that users resort to
this package to explain their pre-trained models, we provide a simple
API call to train the following models:

—Linear Classifier (Logistic Regression and Multinomial Logit)
—Multi-Layer Perceptron (Deep Neural Network)
—Deep Ensemble Lakshminarayanan, Pritzel, and Blundell [21]
—Decision Tree, Random Forest, Gradient Boosted Trees

As we demonstrate below, it is straightforward to extend the package
through custom models. Support for torchmodels trained in Python
or R is also available.4

3.2 Generators
A large and growing number of counterfactual generators have al-
ready been implemented in our package (Table 1). At a high level, we
distinguish generators in terms of their compatible model types, their

4We are currently relying on PythonCall.jl and RCall.jl and this func-
tionality is still somewhat brittle. Since this is more of an edge case, we may
move this feature into its own package in the future.
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default search space, and their composability. All “gradient-based”
generators are compatible with differentiable models, e.g. Flux and
torch, while “tree-based” generators are only applicable to models
that involve decision trees. Concerning the search space, it is possible
to search counterfactuals in a lower-dimensional latent embedding of
the feature space that implicitly encodes the data-generating process
(DGP). To learn the latent embedding, existing work has typically
relied on generative models or existing causal knowledge [14, 16].
While this notion is compatible with all of our gradient-based gener-
ators, only some generators search a latent space by default. Finally,
composability implies that the given generator can be blended with
any other composable generator, which we discuss in Section 4.2.
Beyond these broad technical distinctions, generators largely differ
in terms of how they address the various desiderata mentioned above:
ClapROAR aims to preserve the classifier, i.e. to generate counterfac-
tuals that are robust to endogenous model shifts [1]; CLUE searches
plausible counterfactuals in the latent embedding of a generative
model by explicitly minimising predictive entropy [2]; DiCE is de-
signed to generate multiple, maximally diverse counterfactuals [26];
FeatureTweak leverages the internals of decision trees to search coun-
terfactuals on a feature-by-feature basis, finding the counterfactual
that tweaks the features in the least costly way [36]; Gravitational
aims to generate plausible and robust counterfactuals by minimis-
ing the distance to observed samples in the target class [1]; Greedy
aims to generate plausible counterfactuals by implicitly minimising
predictive uncertainty of Bayesian classifiers [33]; GrowingSpheres
is model-agnostic, relying solely on identifying nearest neighbours
of counterfactuals in the target class by gradually increasing the
search radius and then moving counterfactuals in that direction[22];
PROBE generates probabilistically robust counterfactuals [30]; RE-
VISE addresses the need for plausibility by searching counterfactuals
in the latent embedding of a Variational Autoencoder (VAE) [14];
Wachter is the baseline approach that only penalises the distance to
the original sample [41].

Table 1. : Overview of implemented counterfactual generators.

Generator Model Type Search Space Composable

ClaPROAR [1] gradient based feature yes
CLUE [2] gradient based latent yes
DiCE [26] gradient based feature yes
FeatureTweak
[36]

tree based feature no

Gravitational [1] gradient based feature yes
Greedy [33] gradient based feature yes
GrowingSpheres
[22]

agnostic feature no

PROBE [30] gradient based feature no
REVISE [14] gradient based latent yes
Wachter [41] gradient based feature yes

3.3 Data Catalogue
To allow researchers and practitioners to test and compare counterfac-
tual generators, the package ships with catalogues of pre-processed
synthetic and real-world benchmark datasets from different domains.
Real-world datasets include:

—Adult Census [4]
—California Housing [28]
—CIFAR10 [20]
—German Credit [12]
—Give Me Some Credit [15]
—MNIST [23] and Fashion MNIST [42]
—UCI defaultCredit [43]

Custom datasets can also be easily preprocessed as explained in the
documentation.

3.4 Plotting
The package also extends common Plots.jl methods to facilitate
the visualization of results. Calling the generic plot() method on
an instance of type <:CounterfactualExplanation, for example,
generates a plot visualizing the entire counterfactual path in the
feature space5. We will see several examples of this below.

4. Basic Usage
In the following, we begin our exploration of the package functional-
ity with a simple example. We then demonstrate how more advanced
generators can be easily composed and show how users can impose
mutability constraints on features. Finally, we also briefly explore
the topics of counterfactual evaluation and benchmarking.

4.1 A Simple Generic Generator
Code 1 below provides a complete example demonstrating how the
framework presented in Section 2.2 can be implemented through our
package. Using a synthetic data set with linearly separable features
we first fit a linear classifier (line 3). Next, we define the target class
(line 7) and then draw a random sample from the other class (line
10). Finally, we instantiate a generic generator (line 13) and run
the counterfactual search (line 15). Figure 2 illustrates the resulting
counterfactual path in the two-dimensional feature space. Features
go through iterative perturbations until the desired confidence level
is reached as illustrated by the contour in the background, which
shows the softmax output for the target class.

Code 1: Standard workflow for generating counterfactuals.� �
1 # Data and Classifier :
2 counterfactual_data = load_linearly_separable ()
3 M = fit_model ( counterfactual_data , : Linear )
4
5 # Factual and Target :
6 yhat = predict_label (M, counterfactual_data )
7 target = 2 # target label
8 candidates = findall ( vec ( yhat ) .!= target )
9 chosen = rand ( candidates )

10 x = select_factual ( counterfactual_data , chosen )
11
12 # Counterfactual search :
13 generator = GenericGenerator ()
14 ce = generate_counterfactual (
15 x, target , counterfactual_data , M, generator )� �

5For multi-dimensional input data, standard dimensionality reduction tech-
niques are used to compress the data. In this case, the classifier’s decision
boundary is approximated through a Nearest Neighbour model. This is still
somewhat experimental and will be improved in the future.
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Fig. 2: Counterfactual path using generic counterfactual generator for con-
ventional binary classifier.

In this simple example, the generic generator produces a valid coun-
terfactual, since the decision boundary is crossed and the predicted
label is flipped. But the counterfactual is not plausible: it does not
appear to be generated by the same DGP as the observed data in the
target class. This is because the generic generator does not take into
account any of the desiderata mentioned in Section 2.2, except for
the distance to the factual sample.

4.2 Composing Generators
To address these issues, we can leverage the ideas underlying some
of the more advanced counterfactual generators introduced above.
In particular, we will now show how easy it is to compose custom
generators that blend different ideas through user-friendly macros.
Suppose we wanted to address the desiderata of plausibility and
diversity. We could do this by blending ideas underlying the DiCE
generator with the REVISE generator. Formally, the corresponding
search objective would be defined as follows,

Z′ = arg min
Z′∈ZL×K

{ℓ(M(f(Z′)), t) + λ · diversity(f(Z′))} (3)

where X′ is an L-dimensional array of counterfactuals, f :
ZL×K 7→ XL×D is a function that maps the L ×K-dimensional
latent space Z to the L × D-dimensional feature space X and
diversity(·) is the penalty proposed by Mothilal, Sharma, and Tan
[26] that induces diverse sets of counterfactuals. As in Equation 2, ℓ
is the loss function, M is the black-box model, t is the target class,
and λ is the strength of the penalty.
Code 2 demonstrates how Equation 3 can be seamlessly
translated into Julia code. We begin by instantiating a
GradientBasedGenerator in line 1. Next, we use chained
macros for composition: firstly, we define the counterfactual search
@objective corresponding to DiCE in line 4; secondly, we define
the latent space search strategy corresponding to REVISE using the
@search_latent_space macro in line 5; finally, we specify our
prefered optimisation method using the @with_optimiser macro
in line 6.

Code 2: Composing a custom generator.� �
1 generator = GradientBasedGenerator ()
2 @chain generator begin
3 @objective logitcrossentropy
4 + 0 .2 ddp_diversity
5 @search_latent_space
6 @with_optimiser Adam (0 .0 05 )
7 end� �

In this case, the counterfactual search is performed in the latent space
of a Variational Autoencoder (VAE) that is automatically trained on
the observed data. It is important to specify the keyword argument
num_counterfactuals of the generate_counterfactual to
some value higher than 1 (default), to ensure that the diversity penalty
is effective. The resulting counterfactual path is shown in Figure 3
below. We observe that the resulting counterfactuals are diverse and
the majority of them are plausible.

Fig. 3: Counterfactual path using the DiCE generator.

4.3 Mutability Constraints
In practice, features usually cannot be perturbed arbitrarily. Suppose,
for example, that one of the features used by a bank to predict the
creditworthiness of its clients is age. If a counterfactual explanation
for the prediction model indicates that older clients should “grow
younger” to improve their creditworthiness, then this is an interest-
ing insight (it reveals age bias), but the provided recourse is not
actionable. In such cases, we may want to constrain the mutability of
features. To illustrate how this can be implemented in our package,
we will continue with the example from above.
Mutability can be defined in terms of four different options: 1) the
feature is mutable in both directions, 2) the feature can only increase
(e.g. age), 3) the feature can only decrease (e.g. time left until your
next deadline) and 4) the feature is not mutable (e.g. skin colour,
ethnicity, . . . ). To specify which category a feature belongs to, users
can pass a vector of symbols containing the mutability constraints at
the pre-processing stage. For each feature one can choose from these
four options: :both (mutable in both directions), :increase (only
up), :decrease (only down) and :none (immutable). By default,
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nothing is passed to that keyword argument and it is assumed that
all features are mutable in both directions.6
We can impose that the first feature is immutable as follows:
counterfactual_data.mutability = [:none, :both]. The
resulting counterfactual path is shown in Figure 4 below. Since only
the second feature can be perturbed, the sample can only move along
the vertical axis. In this case, the counterfactual search does not yield
a valid counterfactual, since the target class is not reached.

Fig. 4: Counterfactual path with immutable feature.

4.4 Evaluation and Benchmarking
The package also makes it easy to evaluate counterfactuals with re-
spect to many of the desiderata mentioned above. For example, users
may want to infer how costly the provided recourse is to individu-
als. To this end, we can measure the distance of the counterfactual
from its original value. The API call to compute the distance met-
ric defined in Wachter, Mittelstadt, and Russell [41], for instance,
is as simple as evaluate(ce; measure=distance_mad), where
ce can also be a vector of CounterfactualExplanations.
Additionally, the package provides a benchmarking framework that
allows users to compare the performance of different generators on
a given dataset. In Figure 5 we show the results of a benchmark
comparing several generators in terms of the average cost and im-
plausibility of the generated counterfactuals. The cost is proxied by
the L1-norm of the difference between the factual and counterfac-
tual features, while implausibility is measured by the distance of the
counterfactuals from samples in the target class. The results illustrate
that there is a tradeoff between minimizing costs to individuals and
generating plausible counterfactuals.

5. Customization and Extensibility
One of our priorities has been to make our package customizable and
extensible. In the long term, we aim to add support for more default
models and counterfactual generators. In the short term, it is designed
to allow users to integrate models and generators themselves. These
community efforts will facilitate our long-term goals.

6Mutability constraints are not yet implemented for Latent Space search.

Fig. 5: Benchmarking results for different generators.

5.1 Adding Custom Models
At the high level, only two steps are necessary to make any supervised
learning model compatible with our package:

—Subtyping: We need to subtype the AbstractFittedModel.
—Dispatch: The functions logits and probs need to be extended

through custom methods for the model in question.

To demonstrate how this can be done in practice, we will reiterate
here how native support for Flux.jl [13] deep learning models
was enabled.7 Once again we use synthetic data for an illustrative
example. Code 3 below builds a simple model architecture that can
be used for a multi-class prediction task. Note how outputs from
the final layer are not passed through a softmax activation function,
since the counterfactual loss is evaluated with respect to logits as we
discussed earlier. The model is trained with dropout.

Code 3: A simple neural network model.� �
1 n_hidden = 32
2 output_dim = length ( unique (y))
3 input_dim = 2
4 model = Chain (
5 Dense ( input_dim , n_hidden , activation ),
6 Dropout (0 .1 ),
7 Dense ( n_hidden , output_dim )
8 )� �

Code 4 below implements the two steps that were necessary to make
Flux models compatible with the package. In line 2 we declare
our new struct as a subtype of AbstractDifferentiableModel,
which itself is an abstract subtype of AbstractFittedModel.8
Computing logits amounts to just calling the model on inputs. Pre-

7Flux models are now natively supported by our package and can be instanti-
ated by calling FluxModel().
8Note that in line 4 we also provide a field determining the likelihood. This
is optional and only used internally to determine which loss function to use
in the counterfactual search. If this field is not provided to the model, the
loss function needs to be explicitly supplied to the generator.
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dicted probabilities for labels can be computed by passing logits
through the softmax function.

Code 4: A wrapper for Flux models.� �
1 # Step 1)
2 struct MyFluxModel <: AbstractDifferentiableModel
3 model :: Any
4 likelihood :: Symbol
5 end
6
7 # Step 2)
8 # import functions in order to extend
9 import CounterfactualExplanations . Models : logits

10 import CounterfactualExplanations . Models : probs
11 logits (M:: MyFluxModel , X:: AbstractArray ) =

M. model (X)
12 probs (M:: MyFluxModel , X:: AbstractArray ) =

softmax ( logits (M, X))
13 M = MyFluxModel ( model )� �

The API call for generating counterfactuals for our new model is
the same as before. Figure 6 shows the resulting counterfactual path
for a randomly chosen sample. In this case, the contour shows the
predicted probability that the input is in the target class (t = 2).

Fig. 6: Counterfactual path using generic counterfactual generator for multi-
class classifier.

5.2 Adding Custom Generators
In some cases, composability may not be sufficient to implement
specific logics underlying certain counterfactual generators. In such
cases, users may want to implement custom generators. To illustrate
how this can be done we will consider a simple extension of our
GenericGenerator. As we have seen above, Counterfactual Ex-
planations are not unique. In light of this, we might be interested in
quantifying the uncertainty around the generated counterfactuals [9].
One idea could be, to use dropout to randomly switch features on
and off in each iteration. Without dwelling further on the merit of
this idea, we will now briefly show how this can be implemented.

5.2.1 A Generator with Dropout. Code 5 below implements
two important steps: 1) create an abstract subtype of the
AbstractGradientBasedGenerator and 2) create a constructor
with an additional field for the dropout probability.

Code 5: Building a custom generator with dropout.� �
1 # Abstract suptype :
2 abstract type AbstractDropoutGenerator <:

AbstractGradientBasedGenerator end
3 # Constructor :
4 struct DropoutGenerator <:

AbstractDropoutGenerator
5 loss :: Symbol # loss function
6 complexity :: Function # complexity function
7 λ:: AbstractFloat # strength of penalty
8 decision_threshold :: Union { Nothing , AbstractFloat }
9 opt :: Any # optimizer

10 τ :: AbstractFloat # tolerance for convergence
11 p_dropout :: AbstractFloat # dropout rate
12 end� �

Next, in Code 6 we define how feature perturbations are generated for
our custom dropout generator: in particular, we extend the relevant
function through a method that implements the dropout logic.

Code 6: Generating feature perturbations with dropout.� �
1 using CounterfactualExplanations . Generators
2 function Generators . generate_perturbations (
3 generator :: AbstractDropoutGenerator ,
4 ce :: CouterfactualExplanation
5 )
6 s′ = deepcopy ( ce .s′)
7 new_s′ = Generators . propose_state (
8 generator , ce )
9 ∆s′ = new_s′ - s′ # gradient step

10 # Dropout :
11 set_to_zero = sample (
12 1: length (∆s′),
13 Int ( round ( generator . p_dropout * length (∆s′))),
14 replace = false
15 )
16 ∆s′[ set_to_zero ] .= 0
17 return ∆s′

18 end� �
Finally, we proceed to generate counterfactuals in the same way we
always do. The resulting counterfactual path is shown in Figure 7.

6. A Real-World Examples
Now that we have explained the basic functionality of
CounterfactualExplanations.jl through some synthetic
examples, it is time to work through examples involving real-world
data.

6.1 Give Me Some Credit
The Give Me Some Credit dataset is one of the tabular real-world
datasets that ship with the package [15]. It can be used to train a
binary classifier to predict whether a borrower is likely to experience
financial difficulties in the next two years. In particular, we have an
output variable y ∈ {0 = no stress, 1 = stress} and a feature
matrix X that includes socio-demographic variables like age and

7
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Fig. 7: Counterfactual path for a generator with dropout.

income. A retail bank might use such a classifier to determine if
potential borrowers should receive credit or not.
For the classification task, we use a Multi-Layer Perceptron with
dropout regularization. Using the Gravitational generator [1] we will
generate counterfactuals for ten randomly chosen individuals that
would be denied credit based on our pre-trained model. Concerning
the mutability of features, we only impose that the age cannot be
decreased.
Figure 8 shows the resulting counterfactuals proposed by Wachter in
the two-dimensional feature space spanned by the age and income
variables. An increase in income and age is recommended for the
majority of individuals, which seems plausible: both age and income
are typically positively related to creditworthiness.

Fig. 8: Give Me Some Credit: counterfactuals for would-be borrowers pro-
posed by the Gravitational Generator.

6.2 MNIST
For our second example, we will look at image data. The MNIST
dataset contains 60,000 training samples of handwritten digits in the
form of 28x28 pixel grey-scale images [23]. Each image is associated
with a label indicating the digit (0-9) that the image represents. The
data makes for an interesting case study of CE because humans have
a good idea of what plausible counterfactuals of digits look like. For
example, if you were asked to pick up an eraser and turn the digit
in the left panel of Figure 9 into a four (4) you would know exactly
what to do: just erase the top part.

On the model side, we will use a simple multi-layer perceptron
(MLP). Code 7 loads the data and the pre-trained MLP. It also loads
two pre-trained Variational Auto-Encoders, which will be used by
our counterfactual generator of choice for this task: REVISE.

Code 7: Loading pre-trained models and data for MNIST.� �
1 counterfactual_data = load_mnist ()
2 X, y = unpack_data ( counterfactual_data )
3 input_dim , n_obs = size ( counterfactual_data .X)
4 M = load_mnist_mlp ()
5 vae = load_mnist_vae ()
6 vae_weak = load_mnist_vae (; strong = false )� �

The proposed counterfactuals are shown in Figure 9. In the case in
which REVISE has access to an expressive VAE (centre), the result
looks convincing: the perturbed image does look like it represents a
four (4). In terms of explainability, we may conclude that removing
the top part of the handwritten nine (9) leads the black-box model to
predict that the perturbed image represents a four (4). We should note,
however, that the quality of counterfactuals produced by REVISE
hinges on the performance of the underlying generative model, as
demonstrated by the result on the right. In this case, REVISE uses a
weak VAE and the resulting counterfactual is invalid. In light of this,
we recommend using Latent Space search with care.

Fig. 9: Counterfactual explanations for MNIST using a Latent Space genera-
tor: turning a nine (9) into a four (4).

7. Discussion and Outlook
We believe that this package in its current form offers a valuable
contribution to ongoing efforts towards XAI in Julia. That being
said, there is significant scope for future developments, which we
briefly outline in this final section.

7.1 Candidate models and generators
The package supports various models and generators either natively
or through minimal augmentation. In future work, we would like to
prioritize the addition of further predictive models and generators.
Concerning the former, it would be useful to add native support
for any supervised models built in MLJ.jl, an extensive Machine
Learning framework for Julia [5]. This may also involve adding
support for regression models as well as additional non-differentiable
models. In terms of counterfactual generators, there is a list of recent
methodologies that we would like to implement including MINT
[16], ROAR [37] and FACE [31].

8
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7.2 Additional datasets
For benchmarking and testing purposes it will be crucial to add more
datasets to our library. We have so far prioritized tabular datasets
that have typically been used in the literature on counterfactual
explanations including Adult, Give Me Some Credit and German
Credit [17]. There is scope for adding data sources that have so far
not been explored much in this context including additional image
datasets as well as audio, natural language and time-series data.

8. Concluding remarks
CounterfactualExplanation.jl is a package for generating
Counterfactual Explanations and Algorithmic Recourse in Julia.
Through various synthetic and real-world examples, we have demon-
strated the basic usage of the package as well as its extensibility. The
package has already served us in our research to benchmark vari-
ous methodological approaches to Counterfactual Explanations and
Algorithmic Recourse. We therefore strongly believe that it should
help other practitioners and researchers in their own efforts towards
Trustworthy AI.
We envision this package to one day constitute the go-to place for
explaining arbitrary predictive models through an extensive suite of
counterfactual generators. As a major next step, we aim to make our
library as compatible as possible with the popular MLJ.jl package
for machine learning in Julia. We invite the Julia community to
contribute to these goals through usage, open challenge and active
development.
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