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SUMMARY

Many of the most celebrated recent advances in artificial intelligence (AI) have been
built on the back of highly complex and opaque models that need little human
oversight to achieve strong predictive performance. But while their capacity to
recognize patterns from raw data is impressive, their decision-making process is
neither robust nor well understood. This has so far inhibited trust and widespread
adoption of these technologies. This thesis contributes to research efforts aimed
at tackling these challenges, through interdisciplinary insights and methodological
contributions.

The principle goal of this work is to contribute methods that help us in making
opaque Al models more trustworthy. Specifically, we aim to (1) explore and chal-
lenge existing technologies and paradigms in the field; (2) improve our ability to
hold opaque models accountable through thorough scrutiny; and, (3) leverage the
results of such scrutiny during training to improve the trustworthiness of models.

Methodologically, the thesis focuses on counterfactual explanations and algorithmic
recourse for individuals subjected to opaque Al systems. We explore what type of
real-world dynamics can be expected to play out when recourse is provided and
implemented in practice. Based on our finding that individual cost minimization—a
core objective in recourse—neglects hidden external costs of recourse itself, we revisit
yet another established objective: namely, that explanations should be plausible
first and foremost. Our work demonstrates that a narrow focus on this objective
can mislead us into trusting fundamentally untrustworthy systems. To avoid this
scenario, we propose a novel method that aids us in disclosing explanations that
are maximally faithful, that is consistent with the behavior of models. This not
only allows us to assess the trustworthiness of models, but also improve it: we show
that faithful explanations can be used during training to ensure that models learn
plausible explanations.

Finally, we also critically assess efforts towards trustworthy AI in the context of
modern large language models (LLM). Specifically, we cast doubt on recent findings
and practices presented in the field of mechanistic interpretability and caution our
fellow researchers in this space against misinterpreting and inflating their findings.

In summary, this thesis makes cutting-edge research contributions that improve our
ability to make opaque AI models more trustworthy. Beyond our core research
contributions, this thesis makes substantial contributions to open-source software.
Through various software packages that we have developed, we make our research
and that of others more accessible.

XI






SAMENVATTING

Veel van de meest geprezen recente ontwikkelingen op het gebied van kunstmatige
intelligentie (AI) zijn gebouwd op basis van zeer complexe en intransparante mod-
ellen die weinig menselijk toezicht nodig hebben om sterke voorspellende prestaties
te behalen. Maar hoewel hun vermogen om patronen uit ruwe data te herkennen
indrukwekkend is, is hun besluitvormingsproces noch robuust noch goed begrepen.
Dit heeft tot nu toe het vertrouwen in en de wijdverspreide adoptie van deze tech-
nologieén belemmerd. Dit proefschrift draagt bij aan onderzoeksinspanningen die
gericht zijn op het aanpakken van deze uitdagingen, door middel van interdisciplin-
aire inzichten en methodologische bijdragen.

Het hoofddoel van dit werk is om methoden bij te dragen die ons helpen met het be-
trouwbaarder maken van intransparante Al-modellen. Specifiek streven we ernaar
om (1) bestaande technologieén en paradigma’s in het veld te verkennen en te bev-
ragen; (2) ons vermogen te verbeteren om intransparante modellen verantwoordelijk
te houden door middel van grondige inspectie; en, (3) de resultaten van dergelijke
inspectie tijdens de modeltraining te benutten om de betrouwbaarheid van modellen
te verbeteren.

Methodologisch richt het proefschrift zich op ‘counterfactual explanations™—contra-
feitelijke verklaringen—en ‘algorithmic recourse’-algoritmische hulpmiddelen—voor in-
dividuen die worden blootgesteld aan intransparante Al-systemen. We onderzoeken
welke dynamieken in de praktijk kunnen worden verwacht wanneer algorithmic re-
course worden aangeboden en geimplementeerd. Gebaseerd op onze bevinding dat
individuele kostenminimalisatie—een kerndoelstelling bij recourse—verborgen ex-
terne kosten van recourse zelf negeert, heroverwegen we nog een ander algemeen
aanvaard doel: namelijk dat de uitleg van algoritmische beslissingen in de eerste
plaats plausibel moeten zijn. Ons werk toont aan dat een dergelijke interpretatie
van uitlegbaarheid ons kan misleiden om fundamenteel onbetrouwbare systemen te
vertrouwen.

Om dit scenario te voorkomen, stellen we een nieuwe methode voor die ons helpt bij
het vinden van verklaringen die zo goed mogelijk aansluiten bij het daadwerkelijke
gedrag van modellen. Dit stelt ons in staat de betrouwbaarheid van AT niet alleen te
beoordelen, maar ook te verbeteren: we laten zien dat waarheidsgetrouwe verklarin-
gen tijdens de training kunnen worden gebruikt om te verzekeren dat modellen
plausibele verklaringen leren.

Tot slot kijken we kritisch naar het vraagstuk van betrouwbare AI in de context
van moderne grote taalmodellen (LLMs). Specifieker stellen we vragen bij recente
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bevindingen en praktijken in het veld van mechanistische interpreteerbaarheid, en
waarschuwen we onze collega-onderzoekers in dit gebied voor het verkeerd interpret-
eren en opblazen van hun resultaten.

Samenvattend levert dit proefschrift baanbrekende onderzoeksbijdragen die ons ver-
mogen verbeteren om intransparante Al-modellen betrouwbaarder te maken. Naast
onze kernonderzoeksbijdragen levert dit proefschrift substantiéle bijdragen aan open-
source software. Door middel van verschillende softwarepakketten die we hebben
ontwikkeld, maken we ons onderzoek en dat van anderen toegankelijker.



INTRODUCTION

Recent developments in artificial intelligence (AI) have largely centered around rep-
resentation learning: instead of relying on features and rules that are carefully
hand-crafted by humans, modern machine learning (ML) models are tasked with
learning representations directly from data to make predictions (Goodfellow, Ben-
gio, and Courville 2016)—this typically involves optimizing these representation to
achieve narrow training objectives like predictive accuracy. Modern advances in
computing have made it possible to provide such models with ever-growing degrees
of freedom to achieve that task, which frequently allows them to outperform tra-
ditionally more parsimonious models. While this branch of AI has certainly not
been the only active field of research, it is arguably the one that has attracted the
highest levels of public attention and investment over the past decade. This trend
has been fuelled by increasingly bold promises that “big data leads to better [..] de-
cisions” (McAfee et al. 2012), companies embracing “machine learning will be the
big winners of tomorrow” (Tank 2017) and that, ultimately, “[AI] could massively
accelerate scientific discovery and innovation well beyond what we are capable of
doing on our own” (Altman 2025).

Unfortunately, the models underlying all these developments learn increasingly com-
plex and highly sensitive representations that humans can no longer easily interpret.
This trend towards complexity for the sake of performance has come under serious
scrutiny in recent years. Omne important challenge arising from high sensitivity is
model robustness: at the very cusp of the deep learning (DL) revolution, Szegedy et
al. (2014) showed that artificial neural networks (ANN) are sensitive to adversarial
examples (AEs): perturbed versions of data instances that yield vastly different
model predictions despite being “imperceptible” in that they are semantically indif-
ferent from their factual counterparts. Even though some partially effective mitiga-
tion strategies have been proposed—most notably adversarial training (Goodfellow,
Shlens, and Szegedy 2015)—truly robust deep learning remains unattainable even
for models that are considered “shallow” by today’s standards (Kolter 2023).
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Another obvious challenge of increased complexity is our own lack of human un-
derstanding with respect to the decision logic underlying these models: as one re-
cent work puts it, “nobody understands deep learning” (Prince 2023). This, too,
has attracted much criticism: O’Neil (2016) pointed to the dangers of deploying
such opaque models in the real world; Buolamwini and Gebru (2018) uncovered
hidden biases of supposedly ‘neutral algorithms’ and Rudin (2019) argued against
using opaque models altogether. On the other end of the spectrum, the “black-
box” challenge (as it is sometimes called) has attracted an abundance of research
on explainable AI (XAI), a paradigm that focuses on the development of tools to
derive (post-hoc) explanations from complex model representations. Such explana-
tions should mitigate a scenario in which practitioners deploy opaque models and
blindly rely on their predictions. Effective XAl tools hold the promise of not only
aiding us in monitoring models, but also providing recourse to individuals subjected
to them.

Part of the problem is that the high degrees of freedom provide room for many
solutions that are locally optimal with respect to narrow objectives (Wilson 2020).
Indeed, recent work on the so-called “lottery ticket hypothesis” suggests that mod-
ern neural networks can be pruned by up to 90% while preserving their predictive
performance (Frankle and Carbin 2019). Similarly, Zhang et al. (2021) showed
that state-of-the-art neural networks are expressive enough to fit randomly labeled
data. Thus, looking at the predictive performance alone, the solutions may seem to
provide compelling explanations for the data, when in fact they are based on purely
associative, semantically meaningless patterns.

While we believe that for large enough models, bullet-proof explainability remains
as unattainable as robustness, the contributions of this thesis demonstrate that XAI
tools can help us to not only shed light on the solutions space, but tame it. We
will show that is important to not simply seek and isolate model explanations that
satisfy us, but rather think of explanations as distributional quantities that depend
on both the underlying data and the model. By faithfully presenting the whole
spectrum of these distributions and inducing models to be aligned with the subset of
explanations that humans consider meaningful, XAI can make fundamental progress
towards trustworthy Al

1.1. TRUSTWORTHY ARTIFICIAL INTELLIGENCE

Trustworthy Al is a relatively novel term spanning a broad field of research. It covers
a range of subtopics including fairness, ethics, societal impact and explainability.
Varshney (2022) represents the first concerted effort towards unifying and defining
related concepts in a single self-contained resource. The urgency for this kind of
effort and the field as whole first crystallized in the early 2010s when both industry
and regulators began using Al to process the vast amounts of data afforded by the

IWe follow the standard ML convention, where “degrees of freedom” refer to the number of
parameters estimated from data.
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digitalization of society. From recommender systems used by tech giants to tailor
consumer advertisements to natural language processing (NLP) used by central
banks to monitor economic sentiment—everyone has been eager to innovate in this
space. But aside from innovation and progress, novel and disruptive technologies
also generally present society with new challenges.

O’Neil (2016) was among the first to point out some of these challenges in her in-
fluential book ‘Weapons of Maths Destruction’. Backed by numerous real-world
examples, O’Neil (2016) makes a striking case for why should be very careful and
even skeptical of using opaque algorithms to organize society. At times when some
governments have chosen to co-operate with the tech industry to monitor and or-
ganize sensitive social security data of their constituents and even deploy Al in the
context of nuclear security (OpenAT 2025; Field 2025), O’Neil’s warnings seem more
relevant than ever. Al is not inherently good or bad, but it also will not hold it-
self accountable for any real-world consequences—good or bad. That remains our
responsibility and ongoing efforts towards trustworthy Al play an important role in
fulfilling it.

While that responsibility has mostly been shunned by those intent on moving fast
and breaking things?, we remain cautiously optimistic about improving things from
the inside, much in line with Varshney (2022). Conscious of the “increasingly so-
ciotechnical nature of machine learning”, he defines trustworthy Al in terms of its
interaction with humans and society at large. Since we will refer back to this at
times, we restate his definition of trustworthy AI here:

Definition 1.1 (Trustworthy AI). For an Al system to be considered trustworthy, it
needs to fulfill the following criteria:

1. Achieve basic performance at the task its intended to be used for.

2. Achieve this performance reliably, i.e. safely, fairly and robustly.

3. Facilitate human interaction through predictability, understandability and
ideally transparency.

4. Be aligned with our agenda.

Even though modern AI systems generally fail to comply with this definition and
“corporations do not trust artificial intelligence and machine learning in critical
enterprise workflows” (Varshney 2022), Definition 1.1 provides goal posts that are
not out of reach. In fact, we would argue that at least in those cases where we are
sufficiently tempted to use Al today, basic performance is usually not an issue. In
this work, we typically work on one or more of the remaining three criteria under the
assumption that some complex Al tool is preferable over a more simple solution in
terms of performance. We are well aware that this assumption does not always hold,
and simple tools are often preferable (Rudin 2019). Still, we believe that complex,

2Until 2014, “move fast and break things” was part of Meta’s official motto (then still operating
under the name of Facebook). The phrase has been used to characterize the broader tech
industry (see, for example, Vardi (2018)).
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opaque models are here to stay and hence we aim to contribute towards making
them more trustworthy.

Before we zoom in on the subdomain of trustworthy Al that is most relevant to this
thesis, it is worth pointing out that contributions in this space, especially regarding
sociotechnical problems, have come from a variety of disciplines and communities
(Buszydlik et al. 2025). These communities are not generally focused on providing
technical solutions for AI, which stands in contrast to the domain of Explainable AT
introduced in the following section (Buszydlik et al. 2024).

1.2. EXPLAINABLE ARTIFICIAL INTELLIGENCE

Considering Definition 1.1, our work contributes primarily to improving AI’s poten-
tial for criterium 3: human interaction. Specifically, most of our methodological
contributions are geared towards fostering predictability and understandability of
models through the means of Explainable AT (XAI). The field of XAI is concerned
with creating methods that improve the explainability of models and thus foster
human interaction and trust (Arrieta et al. 2020). This subfield of trustworthy
Al is active and large. We will once again refrain from attempting to provide a
detailed general introduction to the topic and instead refer readers to Molnar (2022)
for a comprehensive overview. For the remainder of this work, it suffices to under-
stand that our methodological contributions largely fall into the category of post-hoc,
local, explanations for opaque, supervised models. This family of models most not-
ably includes ANNSs, but also other popular ML models including random forests,
XGBoost and Support Vector Machines (SVM). We distinguish opaque ezplainable
models from inherently interpretable models (Rudin 2019). The latter category in-
cludes models that are interpretable by design, such as linear regression, logistic
regression and shallow decision trees (Molnar 2022).

Local explanations are local in that they apply to individual samples, sometimes
synonymously referred to as instances or inputs. Specifically, they explain the map-
ping from individual inputs to predictions for opaque models (Molnar 2022). Among
the most popular local explanation methods are LIME (Ribeiro, Singh, and Gues-
trin 2016), SHAP (Lundberg and Lee 2017) and counterfactual explanations (CE)
(Wachter, Mittelstadt, and Russell 2017). LIME and SHAP are closely related in
that they both use locally additive, linear and interpretable surrogate models to ex-
plain the predictions made by the opaque model. SHAP, in particular, has gained
huge popularity among researchers and practitioners, likely due to being solidly
rooted in game theory and ready availability of multiple open-source software im-
plementations (Molnar 2022). Both LIME and SHAP rely on input perturbations
in the local neighborhoods of individual instance to construct the surrogate explan-
ation model, which makes them vulnerable to adversaries (Slack et al. 2020). The
reliance on surrogate models is one key feature that distinguishes LIME and SHAP
from counterfactual explanations, the method we focus on in this work.
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1.3. COUNTERFACTUAL EXPLANATIONS

Instead of locally approximating the behavior of opaque models, counterfactual
explanations work under the premise of evaluating perturbed inputs directly with
respect to the opaque model. Specifically, valid counterfactuals are perturbed inputs
that yield some pre-determined change in the prediction of the model. This makes
the interpretation of counterfactual explanations intuitive and straightforward: per-
turbations to individual inputs tell us directly what type of feature changes would
have been necessary to yield some desired prediction (Molnar 2022).

Typically, counterfactuals are generated with the objective to minimize those neces-
sary changes, which is how the counterfactual search objective was originally framed
in the seminal work by Wachter, Mittelstadt, and Russell (2017). This makes sense,
if we think of CE as a means to provide algorithmic recourse (AR) to individuals
adversely affected by automated decision-making (ADM) systems (a.k.a. “Weapons
of Math Destruction” (O’Neil 2016)). In this context, minimal changes to features
can be thought of as minimal costs to individuals who need to implement recourse to
change negative into positive predictions and outcomes. But as we will demonstrate
in this thesis, minimizing costs to individuals in this way neglects the downstream
effects that individual recourse can be expected to have on the broader group stake-
holders. Still, proximity—in terms of minimal distance or cost—is one of the core
desiderata for counterfactuals (Verma et al. 2022; Karimi et al. 2021).

Of course, even minimal feature changes may be infeasible in practice: individuals
cannot change their height, age or ethnicity, for example, but if a model is sensit-
ive to these features, then unconstrained counterfactuals will inevitably reflect this
and the resulting recourse recommendations will not be actionable. Actionability
is therefore another key desideratum for CE and AR that has received attention in
the literature (Ustun, Spangher, and Liu 2019). We will see that at least for coun-
terfactual explainers that rely on gradient-based optimization, it is straight-forward
to respect actionability constraints. But while this is fortunate news with respect to
actionable recourse, we will also argue that actionability constraints should really
be addressed before the inference stage, during model training. For models with
high degrees of freedom, this is of course not trivial.

By now it may already be obvious that counterfactual explanations are not unique.
After all, we can perturb features in many, possibly infinite ways to achieve some
desired prediction. Suppose, for example, that we have an opaque model that pre-
dicts whether individuals qualify for a loan to purchase a home. In this case, the
outcome of interest is binary from the perspective of individuals affected by the
model: {0 := empty hands, 1 := homeowners}. Assuming the model is any conven-
tional classification model, there exist infinitely many unique counterfactual states
on either side of the decision boundary. This inherent multiplicity of explanations
has been described as a limitation of CE in some places (Molnar 2022), presum-
ably because it challenges us to form a feasible and desirable subset of explanations.
Much of the existing work in this field has indeed been focused on designing meth-
odologies for generating counterfactuals that meet certain desiderata. Some have
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explicitly embraced multiplicity of explanations and argued that its desirable to end
up with a diverse set of counterfactuals (Mothilal, Sharma, and Tan 2020). In the
context of algorithmic recourse, this corresponds to offering individuals a menu of
recourse recommendations to choose from according to their own preferences.

Apart from proximity and diversity, various works have proposed methods aimed
at ensuring plausibility of explanations (Joshi et al. 2019; Poyiadzi et al. 2020;
Schut et al. 2021). The guiding principle is to generate counterfactuals that are
close to the data manifold in the target domain. Since the target domain is generally
different from the factual domain—that is the domain the instance originally belongs
to—any improvements with respect to plausibility inevitably decrease proximity: a
counterfactual cannot be close to its factual and the target manifold at the same time.
These types of trade-offs between different desiderata are not uncommon, although
fortunately different desiderata also tend to complement each other. Plausibility, for
example, has also been linked to robustness of counterfactuals (Artelt et al. 2021),
where explanations are considered as robust to the extent that they remain valid if
the model or data changes (Pawelczyk et al. 2023). Robustness of counterfactuals
has in turn been linked to diversity (Leofante and Potyka 2024).

Navigating the sheer amount of desiderata for CE and their interplay can be chal-
lenging: depending on the context, domain and even individual users, one may need
to optimize for one desideratum at the cost of another. In this thesis, we offer
one guiding principle that should help researchers and practitioners in this respect.
Specifically, we argue and demonstrate that counterfactual explanations should first
and foremost be faithful to the model in question. In other words, counterfactuals
should be consistent with what the model has learned about the underlying problem
and data. Faithfulness has previously been largely ignored by researchers, but we
demonstrate that neglecting this desideratum can lead to undesirable outcomes. It
is, for example, generally possible to generate plausible counterfactuals for even the
most fragile and untrustworthy models that were optimized solely for accuracy. But
if these counterfactuals do not faithfully explain model behavior, they are not only
useful but potentially misleading, instilling a false sense of trust in poorly trained
models.

1.4. TRUSTWORTHY AI IN THE AGE OF LLMS

Existing challenges with respect to the trustworthiness of opaque Al models have
become more pressing in recent years as the scale and potential impact of Al sys-
tems on society has increased in the age of LLMs. Following the release of ChatGPT,
even some of the most influential and respected Al researchers were in such awe that
they publically expressed concern around our capability to control these systems,
spurring an active debate and research on Al safety and explainability (Future of
Life Institute 2023b). An emerging line of research in this context is mechanistic
interpretability, which aims to shed light on the inner workings of vast neural net-
works.
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There have been promising advances in this field that aid us in understanding,
monitoring and controlling the tools we have so readily deployed on society (Bereska
and Gavves 2024). Unfortunately though, there has also been a tendency in some
circles to jump from interpretability findings to premature conclusions about AGI.
As a final research contribution of this thesis, we critically assess this trend and call
for greater caution and modesty in interpreting and presenting such findings.

1.5. GOALS AND RESEARCH QUESTIONS

As stated earlier, the principal goal of this work is to contribute methods that help
us in making opaque Al models more trustworthy. Since the field of trustworthy Al
is still relatively young, it is important that research and any related software are
made widely and openly accessible to other researchers and practitioners.

15.1. coALs
The principal goals of this thesis are as follows:

1. Explore and challenge existing technologies and paradigms in trustworthy Al,
in particular with respect to explainability.

2. Improve our ability to hold complex machine learning models accountable
through novel methods that facilitate thorough scrutiny.

3. Leverage the results of such scrutiny to aid us in building models that are
inherently more trustworthy.

General principles that have played a role in achieving all of these goals include
a strong adherence to best practices for producing reproducible and accessible re-
search, as well as open-source software. The remainder of Section 1.5 dives deeper
into more granular research questions that have grown out of these principal goals.

1.5.2. COUNTERFACTUAL EXPLANATIONS AND OPEN-SOURCE

Open-source software implementations of LIME and SHAP have contributed to
the popularity of these methods (Molnar 2022) and we strive to achieve the same
outcome for counterfactual explanations. Specifically, we aim to make existing work
in the field readily available and in doing so, we hope to inform our own research
about any existing gaps, challenges or open questions. Ultimately, it is our goal
to contribute methodological advances accompanied by state-of-the-art open-source
software that enable researchers and practitioners to not only better understand the
behavior of opaque Al models, but also use that understanding in order to improve
their trustworthiness.

To achieve this goal, we begin our research trajectory with the following question:
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Thesis Research Question 1.1:  Counterfactual Explanations and Open-
Source

What are counterfactual explanations, why are they useful for trustworthy Al
and what gaps are there in the existing open-source software landscape?

1.5.3. DYNAMICS OF CE AND AR

As part of answering this question, in Chapter 2 we introduce a novel comprehensive,
extensive and highly performant software implementation for generating counterfac-
tual explanations in the Julia programming language (Bezanson et al. 2017; Alt-
meyer, Deursen, and Liem 2023a). This is a first important step towards facilitating
human interaction with opaque Al in the context of this thesis (Definition 1.1). The
fast performance of Julia and our package allows us to explore previously untapped
challenges that relate to the dynamics of counterfactual explanations (Verma et al.
2022). In particular, we ask ourselves:

Thesis Research Question 1.2: Dynamics of CE and AR

What dynamics are generated when off-the-shelf solutions to CE and AR are
implemented in practice?

1.5.4. PLAUSIBILITY AND FAITHFULNESS

In consideration of Definition 1.1, we specifically wonder if by facilitating human
interaction we risk creating adverse effects on other aspects of trustworthiness in-
cluding basic model performance and reliability. Answering these questions requires
computationally expensive simulations that involve repeatedly generating CE and
AR and (re-)training machine learning models. Findings from such simulations help
us to uncover consequences that were difficult to predict when designing initial ob-
jectives for individual recourse. Our work on this question makes it clear that a
narrow focus on minimizing costs to individuals can create dynamics that are costly
to other individuals and stakeholders (Chapter 3). To avoid such endogenous dy-
namics, CE and AR need to be consistent with the data-generating process, which
we have referred to above as ‘plausible’. Since existing work on generating plausible
counterfactuals typically involve surrogate models that are not strictly needed to
generate valid CE, we wonder:

Thesis Research Question 1.3: Plausibility and Faithfulness

Can we generate plausible counterfactuals relying only on the opaque model
itself?
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1.5.5. COUNTERFACTUAL TRAINING

We find that this is not only possible, but also constitutes a cleaner and more prin-
cipled approach towards explaining models through counterfactuals. It mitigates the
risk of entangling the behavior of the opaque model with the surrogate. We demon-
strate that only faithful explanations enable us to distinguish trustworthy from un-
trustworthy models (Chapter 4). We consider this as one of the key steps towards
truly understanding the behavior of opaque models and thus fostering meaningful
human interaction (Definition 1.1). It allows us to ask the following question:

Thesis Research Question 1.4: Counterfactual Training

How can we leverage faithful counterfactual explanations during training to
build more trustworthy models?

Suppose we have trained some opaque model that achieves good basic (predictive)
performance, but faithful explanations reveal that it is untrustworthy. In other
words, the supervised model excels at its narrow discriminative objective by making
predictions based on associations in the data that are not meaningful to humans.
Knowing that this model is not trustworthy is useful in and of itself, but in lack of a
more principled framework to act on this information it creates a dilemma: should
we still go ahead and use the model or discard it in favor of a more trustworthy,
but possibly less performant alternative. Ideally, we would like to have the best of
both worlds by improving the trustworthiness of the performant model. Since we
typically have a pre-defined notion of meaningful explanations for data, we wonder
if it is possible to use faithful explanations as feedback for models during training.
Our work on this question directly targets the alignment aspect of Definition 1.1
and indirectly improves all other aspects (Chapter 5).

1.5.6. TRUSTWORTHY AI AND LLMS

Even though our work remains focused on contributions to core research questions in
the field of CE and AR, we are not oblivious to the advancements and potential soci-
etal impacts of LLMs. It is therefore natural to ask ourselves to what extent existing
work on trustworthy AI (including our own) can play a role in better understanding
the behavior these models. In particular, we ask:

Thesis Research Question 1.5: Trustworthy AI and LLMs

Can we explain the predictions of LLMs and do recent findings from mechan-
istic interpretability really hint at AGI?

The first part of this question is naturally aligned with the broader scope of this
work. The second part is a reaction to concerning trends and tendencies of some
fellow researchers to make unscientific claims about AGI based on questionable
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evidence. We find it necessary to distance ourselves from such practices and to
caution other researchers against it, because we believe they dampen the credibility
of otherwise valid and valiant efforts towards improved trustworthiness through
mechanistic interpretability (Chapter 6).

1.6. RESEARCH METHODOLOGY

This work has been predominated by quantitative methods and software develop-
ment. Development has often informed research and vice-versa.

1.6.1. QUANTITATIVE METHODS

All chapters contain descriptions and mathematical expositions of specific quantitat-
ive methods, as well as computational experiments involving both synthetic, vision
and real-world tabular datasets. Since counterfactual explanations involve a coun-
terfactual search objective, optimization—in particular stochastic gradient-based
optimization—has been the main quantitative method that unites Chapter 2 to
Chapter 5. Across these chapters we also make use of simulations (Chapter 3), boot-
strapping (most notably Chapter 4 and Chapter 5), statistical divergence measures,
confidence intervals and hypothesis testing. We also borrow and adapt established
methods from contrastive learning (Chapter 4 and Chapter 5), robust (adversarial)
learning (Chapter 5), and conformal prediction (Chapter 4). Chapter 5 also involves
a formal mathematical proof. In Chapter 6, we employ tools from mechanistic in-
terpretability for LLMs such as linear probes and propose a specific hypothesis test.
All of our research works involve deep learning and other machine learning models.
Quantitative methods that have not or only indirectly been employed in any of the
chapters but nonetheless played an important role in our research and development
process include: Laplace approximation, Bayesian deep learning, (variational) au-
toencoders, decision trees and tree-based algorithms. Finally, we have made heavy
use of multiprocessing and multithreading to run extensive computational experi-
ments as part of Chapter 4 and Chapter 5.

1.6.2. INTERDISCIPLINARY RESEARCH

During his previous employment as an economist at the Bank of England (Ap-
pendix C), the author of this dissertation realized that despite a growing appetite
for AI, monetary policymakers were rightly skeptical of models they cannot fully
understand nor trust—after all, the decisions made by central banks affect the lives
of entire populations. This background has helped shape much of the work in this
thesis, because it has enabled the author to consider certain problems from a unique
interdisciplinary angle. Some chapters of this thesis are indeed interdisciplinary in
that they are characterized by a bridging of financial and economical expertise and
machine learning expertise: Chapter 3 essentially reformulates algorithmic recourse
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as a scarce resource over which multiple stakeholders compete; Chapter 6 involves
elements and data from economics, finance and psychology, driven by diverse aca-
demic and professional backgrounds of the group of authors; and, elements of this
thesis including Chapter 2, Chapter 4 and Chapter 6 were presented during invited
talks at central banks and other financial institutions such as the Bank of England,
De Nederlandsche Bank and the Verbond van Verzekeraars.

A specific example that plays a role in the context of Chapter 6 should help to illus-
trate how this work has benefited from interdisciplinary perspectives: the concept of
“emergence” in complex Al systems, which has been tied to AGI in some places. One
can draw a parallel to the “emergence” of asset price bubbles in financial markets
(which are complex systems): asset bubbles involve prolonged and often dramatic
increases in prices, far beyond the fundamental value of assets. While they may
involve rational and predictable behavior of individual economic agents (Brunner-
meier 2016), their emergence is notoriously hard to explain, and they typically create
substantial economic damage (Mishkin et al. 2008). Economists have proposed no
shortage of models and methods to explain and detect bubbles, but to the best of
our knowledge none has ever attributed such asset price dynamics to some latent
intelligence of markets.

1.6.3. FAIR DATA AND SOFTWARE MANAGEMENT

Throughout this project, we have made an effort to comply with FAIR data prin-
ciples (Wilkinson et al. 2016). All of our research papers and the accompanying
code bases are maintained in version-controlled repositories, which are organized
and documented according to best practices either as a Julia project or—in most
cases—a fully-fledged package (see Table 1.1 below). In both cases, Julia’s package
manager Pkg.jl handles all dependencies as specified in the Project.toml files
contained in the repositories. Projects can be forked and cloned to local machines,
while packages can be installed from running Julia sessions using Pkg.jl. We use
Zenodo and 4TU.ResearchData to permanently archive research results on the web
and create digital object identifiers (DOI) for individual releases of the various code
bases. These releases are generally managed using semantic version control (SVC).
Relevant DOIs specific to the individual papers are listed in Table 1.1. All of our
experiments rely on publically available datasets, so in terms of new data, besides
the software itself we only release our research results. Consistent with TU Delft’s
Open Access policy, all research papers included in this thesis have been made freely
available on the pure.tudelft.nl repository.

1.7. OUTLINE AND CONTRIBUTIONS

So far we have presented the overarching topics and questions that have shaped
this work with occasional references to where they appear in the remainder of this
thesis. In this final section of the introduction, we provide an outline of what
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follows along with detailed descriptions of our contributions. The body of this
thesis consists of independent and original research papers that have been peer-
reviewed and published (Chapter 2 to Chapter 6). They each individually address
different thesis research questions outlined above and contribute to varying aspects
of Definition 1.1. Unless explicitly stated otherwise, the papers are included in their
original form to ensure their integrity. Only minor modifications have been made if
any at all.

In Chapter 2, we present CounterfactualExplanations.jl: a package for generat-
ing Counterfactual Explanations (CE) and Algorithmic Recourse (AR) for opaque
machine learning models in Julia. We discuss the usefulness of CE for explainable Al
and demonstrate the functionality of the package. The package is straightforward to
use and designed with a focus on customization, extensibility and performance. It is
the de facto go-to place for counterfactual explanations and among the most prom-
inent packages for XAl in Julia: at the time of writing, the package has received
well over 100 stars on GitHub—somewhat higher but broadly in the same range as
ExplainableAljl and ShapML; the package also counts over ten contributors, was
the main target of a successful Julia Seasons of Contributions project and has been
presented to the developer community in main talks at JuliaCon 2022 and 2024.

We have developed extensive research software in Julia (Bezanson et al. 2017),
utilizing other languages including R, Python and Lua in supporting functions.
A result of this—and a major contribution of this thesis—is the Taija pack-
age ecosystem for trustworthy AI in Julia (67 followers and 24 contributors
on GitHub). It includes packages for model explainability (Counterfactual-
Explanations.jl, predictive uncertainty quantification (ConformalPrediction.jl
[142 stars], LaplaceRedux.jl [47 stars]), Bayesian deep learning (LaplaceRe-
dux.jl) and energy-based models (JointEnergyModels.jl). Additionally, there
are number of meta packages that ship supporting functionality for the core
packages: visualizations (TaijaPlotting.jl), datasets for testing and benchmark-
ing (TaijaData.jl) and parallelization (TaijaParallel.jl). The ecosystem has at-
tracted contributions through software projects at TU Delft, as well as Google
Summer of Code and Julia Season of Contributions (in this context, see also
Chapter B on supervision engagements).

While Chapter 2 is first and foremost a developer-friendly introduction to our re-
search software package, we include benchmarks of several popular methods for
generating CE as part of the exposition of its functionality. The work was presen-
ted at JuliaCon Global 2022 and published in proceedings (Altmeyer, Deursen, and
Liem 2023a). The chapter makes the following main contributions to the thesis and
the field of explainable Al as a whole:

o We fill a gap in the existing open-source software landscape for counterfactual
explanations and thus directly address the aspect of human interaction that
is needed for trustworthy Al
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o The choice of Julia as a modern, open-source and highly performant program-
ming language, facilitates experimentation with CE methods at an unpreced-
ented scale.

e The vast online documentation accompanying the package and the paper
provides an actively maintained, up-to-date introduction not only to our re-
search software, but also the field of CE more generally.

o CounterfactualExplanations.jl has not only powered most of the experiments
presented in this thesis, but also external research. It has also laid the found-
ation for a growing ecosystem of packages geared towards trustworthy Al in
Julia.

Chapter 3 is the first traditional research contribution of this thesis. It explores
what has been identified in Verma et al. (2022) as one of the core research chal-
lenges for the field: the dynamics of recourse. Existing work on CE and AR has
largely focused on single individuals in a static environment: given some estimated
model, the goal is to find valid counterfactuals for an individual instance that fulfill
various desiderata. The ability of such counterfactuals to handle dynamics like data
and model drift remains a largely unexplored research challenge. There has also
been surprisingly little work on the related question of how the actual implementa-
tion of recourse by one individual may affect other individuals. Through this work,
we aim to close that gap. We first show that many of the existing methodologies
can be collectively described by a generalized framework. We then argue that the
existing framework does not account for a hidden external cost of recourse, that
only reveals itself when studying the endogenous dynamics of recourse at the group
level. Through simulation experiments involving various state-of-the-art counter-
factual generators and several benchmark datasets, we generate large numbers of
counterfactuals and study the resulting domain and model shifts. We find that the
induced shifts are substantial enough to likely impede the applicability of AR in
some situations. Fortunately, we find various strategies to mitigate these concerns.
Our simulation framework for studying recourse dynamics is fast and open-sourced.
This chapter was originally published at the first IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML) in 2023 (Altmeyer, Angela, et al. 2023).
The key contributions of this work are as follows:

« It demonstrates that long-held beliefs as to what defines optimality in AR, may
not always be suitable. Specifically, our experiments show that the applica-
tion of recourse in practice using off-the-shelf CE methods induces substantial
domain and model shifts.

« We argue that these shifts should be considered as a negative externality of
individual recourse and call for a paradigm shift from individual to collective
recourse in these types of situations.

o By proposing an adapted counterfactual search objective that incorporates
this hidden cost, we make that paradigm shift explicit and show that this
modified objective lends itself to mitigation strategies.

In recognition of the fact that more plausible counterfactuals are less likely to cause
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undesirable dynamics, Chapter 4 explores this desideratum more closely. To ad-
dress the need for plausible explanations, existing work has primarily relied on
surrogate models to learn how the input data is distributed. This effectively real-
locates the task of learning realistic explanations for the data from the model itself
to the surrogate. Consequently, the generated explanations may seem plausible
to humans but need not necessarily describe the behavior of the opaque model
faithfully. We formalize this notion of faithfulness through the introduction of a
tailored evaluation metric and propose a novel algorithmic framework for generat-
ing Energy-Constrained Conformal Counterfactuals that are only as plausible as the
model permits. Through extensive empirical studies, we demonstrate that FCCCo
reconciles the need for faithfulness and plausibility. In particular, we show that for
models with gradient access, it is possible to achieve state-of-the-art performance
without the need for surrogate models. To do so, our framework relies solely on prop-
erties defining the opaque model itself by leveraging recent advances in energy-based
modelling and conformal prediction. To our knowledge, this is the first venture in
this direction for generating faithful counterfactual explanations. This chapter was
originally published at AAAT 2024 (Altmeyer, Farmanbar, et al. 2024a) and makes
the following key contributions:

o We show that established measures of model fidelity in XAI in an insufficient
evaluation metric for counterfactuals and propose a definition of faithfulness
that gives rise to more suitable metrics.

o« We introduce ECCCo: a novel algorithmic approach aimed at generating
energy-constrained conformal counterfactuals that faithfully explain model
behavior. We back this claim through extensive empirical evidence demon-
strating that EC'CCo attains plausibility only when appropriate.

e The work lays the foundation for future work aimed at leveraging faithful
counterfactuals to improve the trustworthiness of models.

Chapter 5 applies the methods developed in the previous chapter to teach models
plausible and actionable explanations. We propose a novel training regime termed
counterfactual training that leverages counterfactual explanations to increase the ex-
planatory capacity of models. As discussed above, to be useful in real-word decision-
making systems, counterfactuals ought to be (1) plausible with respect to the under-
lying data and (2) actionable with respect to the user-defined mutability constraints.
Much existing research has therefore focused on developing post-hoc methods to gen-
erate counterfactuals that meet these desiderata. As we demonstrate in Chapter 4,
the common objective of developing model-agnostic explainers that deliver plausible
explanations for any model is misguided and unnecessary. In Chapter 5, we therefore
hold models directly accountable for the desired end goal: counterfactual training
employs faithful counterfactuals ad-hoc during the training phase to minimize the
divergence between learned representations and plausible, actionable explanations.
We demonstrate empirically and theoretically that our proposed method facilitates
training models that deliver inherently desirable explanations while promoting ro-
bustness and preserving high predictive performance. This work will be published at
the 2026 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)
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and makes the following key contributions:

o We introduce the methodological framework for counterfactual training (CT)
and show theoretically that it can be employed to enforce global actionability
constraints.

o Building on previous related work, we propose a new perspective on the link
between CE and adversarial examples: specifically, we show and utilize the
fact that gradient-based interim (‘nascent’) CE comply with the standard
definition of AE, as samples that have undergone “non-random imperceptible
perturbations” (Szegedy et al. 2014).

o Through extensive experiments, we demonstrate that CT substantially im-
proves explainability and positively contributes to the adversarial robustness
of trained models without sacrificing predictive performance.

The final research chapter, Chapter 6, explores challenges for trustworthy Al in the
age of LLMs. We argue that recent developments in the field of Al, and particu-
larly large language models, have created a ‘perfect storm’ for observing ‘sparks’ of
Artificial General Intelligence that are spurious. Like simpler models, LLMs distill
meaningful representations in their latent embeddings that have been shown to cor-
relate with external variables. Nonetheless, the correlation of such representations
has often been linked to human-like intelligence in the latter but not the former.
We probe models of varying complexity including random projections, matrix de-
compositions, deep autoencoders and transformers: all of them successfully distill
information that can be used to predict latent or external variables and yet none of
them have previously been linked to AGI. We argue and empirically demonstrate
that the finding of meaningful patterns in latent spaces of models cannot be seen as
evidence in favor of AGI. Additionally, we review literature from the social sciences
that shows that humans are prone to seek such patterns and anthropomorphize. We
conclude that both the methodological setup and common public image of Al are
ideal for the misinterpretation that correlations between model representations and
some variables of interest are ‘caused’ by the model’s understanding of underlying
‘ground truth’ relationships. We, therefore, call for the academic community to ex-
ercise extra caution, and to be keenly aware of principles of academic integrity, in
interpreting and communicating about Al research outcomes. This work was presen-
ted at ECONDAT 2024 and eventually published as a position paper at ICML 2024
(Altmeyer, Demetriou, et al. 2024). We make the following key contributions:

o We present several experiments that may invite claims on models yielding
more intelligent outcomes than would have been expected—while at the same
time indicating how we feel these claims should not be made. Our findings
demonstrate that researchers should exert caution when interpreting results
from mechanistic interpretability.

e To lend further weight to our argument, we present a review of social science
findings in that underline how prone humans are to being enticed by patterns
that are not really there.
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« We also propose specific structural and cultural changes to improve the current
situation by helping researchers avoid common pitfalls.

Finally, we conclude this thesis by discussing the core findings and contributions
of this work and proposing directions for future research. To summarize, Table 1.1
provides an overview of the core research chapters along with links to permanent
digital object identifiers.

Table 1.1. Overview of replication repositories and DOIs for each chapter.
Type DOIs

Chapter 2 package 10.5281/zenodo.8239378;
10.4121/975d2¢39-{78e-45d8-a46a-~
a61e441b1d53

Chapter 3 project 10.5281/zenodo.15309163;
10.4121/d7e7080c-7db1-41e3-95ae-
19fa33b4f70c

Chapter 4 package 10.5281/zenodo.15309175;
10.4121/697255aa-c7ad-4bc7-868c-
96d00b6aae02

Chapter 5 package 10.5281/zenodo.18374193;
10.4121/3d5a8ch4-3c83-4fch-acad-
f99fafcdedbb

Chapter 6 project 10.5281/zenodo.15309219;
10.4121/d427d182-4bb0-4972-980c-
adcb28f430b6

1.8. ORIGINS OF CHAPTERS

This final section of the introduction explains the publication history and author
contributions in some more detail. All chapters have undergone thorough peer
review and have been published in top-tier academic venues.?> For all chapters,
Patrick Altmeyer was either lead first author or, in the case of Chapter 6, joint first
author. Arie van Deursen and Cynthia C. S. Liem have primarily contributed in
an editorial capacity consistent with their roles as Patrick’s supervisor and daily
supervisor, respectively.

Chapter 2 This chapter was published in JuliaCon Proceedings by Patrick Alt-
meyer, Arie van Deursen and Cynthia C. S. Liem (2023a). The work was
presented by Patrick as a main talk at JuliaCon 2022.

Chapter 3 This chapter was published in 2023 IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML) by Patrick Altmeyer, Giovan Angela,

3At the time of printing, Chapter 5 has not yet been published but accepted for publication.


https://www.doi.org/10.5281/zenodo.8239378
https://www.doi.org/10.4121/975d2c39-f78e-45d8-a46a-a61e441b1d53
https://www.doi.org/10.4121/975d2c39-f78e-45d8-a46a-a61e441b1d53
https://www.doi.org/10.5281/zenodo.15309163
https://www.doi.org/10.4121/d7e7080c-7db1-41e3-95ae-19fa33b4f70c
https://www.doi.org/10.4121/d7e7080c-7db1-41e3-95ae-19fa33b4f70c
https://www.doi.org/10.5281/zenodo.15309175
https://www.doi.org/10.4121/697255aa-c7ad-4bc7-868c-96d00b6aae02
https://www.doi.org/10.4121/697255aa-c7ad-4bc7-868c-96d00b6aae02
https://doi.org/10.5281/zenodo.18374193
https://www.doi.org/10.4121/3d5a8c54-3c83-4fcb-aea4-f99fafc4edb5
https://www.doi.org/10.4121/3d5a8c54-3c83-4fcb-aea4-f99fafc4edb5
https://www.doi.org/10.5281/zenodo.15309219
https://www.doi.org/10.4121/d427d182-4bb0-4972-980c-adcb28f430b6
https://www.doi.org/10.4121/d427d182-4bb0-4972-980c-adcb28f430b6
doi.org/10.21105/jcon.00130
https://doi.org/10.1109/SaTML54575.2023
https://doi.org/10.1109/SaTML54575.2023
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Aleksander Buszydlik, Karol Dobiczek, Arie van Deursen and Cynthia C. S.
Liem (2023). Patrick gave an oral and poster presentation at SaTML 2023.
Giovan, Aleksander and Karol were all bachelor’s students at the time that
were co-supervised by Patrick and Cynthia during their final-year research
projects (see Appendix B for details).

Chapter 4 This chapter was published in Proceedings of the AAAI Conference on
Artificial Intelligence by Patrick Altmeyer, Mojtaba Farmanbar, Arie van
Deursen and Cynthia C. S. Liem (2024a). Patrick was joined by Arie to
present the work as a poster at AAAT 2024. Mojtaba, who was affiliated with
ING Bank at the time, provided expert insights during multiple discussion
and editorial meetings.

Chapter 5 This chapter has been accepted for publication at SaTML 2026 and will
list Patrick Altmeyer, Aleksander Buszydlik, Arie van Deursen and Cynthia
C. S. Liem as authors (2026). Aleksander joined this project at a later stage
of the project after finishing his master’s degree. He contributed to formal
analysis, literature review and writing (both drafting and reviewing), as well
as conceptualization, software and visualization for specific evaluation metrics.

Chapter 6 This chapter was published in Proceedings of the 41st International Con-
ference on Machine Learning by Patrick Altmeyer, Andrew M. Demetriou,
Antony Bartlett, Cynthia C. S. Liem (2024). Patrick presented the work as a
poster at ICML 2024, but he shared the first-author role with Andrew. Patrick
contributed to conceptualization, data curation, formal analysis, investigation,
literature review, methodology, project administration, software, visualization
and writing (both drafting and reviewing).



https://doi.org/10.1609/aaai.v38i10.28956
https://doi.org/10.1609/aaai.v38i10.28956
https://satml.org/
https://proceedings.mlr.press/v235/altmeyer24a.html
https://proceedings.mlr.press/v235/altmeyer24a.html




EXPLAINING BLACK-BOX
MODELS THROUGH
CounterfactualExplanations. jl

We present CounterfactualExplanations.jl: a package for generating Counter-
factual Explanations (CE) and Algorithmic Recourse (AR) for black-box models in
Julia. CE explain how inputs into a model need to change to yield specific model
predictions. Explanations that involve realistic and actionable changes can be used
to provide AR: a set of proposed actions for individuals to change an undesirable
outcome for the better. In this article, we discuss the usefulness of CE for Explain-
able Artificial Intelligence and demonstrate the functionality of our package. The
package is straightforward to use and designed with a focus on customization and
extensibility. We envision it to one day be the go-to place for explaining arbitrary
predictive models in Julia through a diverse suite of counterfactual generators.
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https://github.com/JuliaTrustworthyAI/CounterfactualExplanations.jl
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This chapter was published in JuliaCon Proceedings by Patrick Altmeyer,
Arie van Deursen and Cynthia C. S. Liem (2023a). It provides (1) a gentle
introduction to counterfactuals; and (2) an overview of the main open-source
Julia package developed as part of this dissertation, and used throughout the
thesis to conduct experiments. See Chapter 1.8 for additional publication
details.

2.1. INTRODUCTION

Machine Learning models like Deep Neural Networks have become so complex and
opaque over recent years that they are generally considered black-box systems. This
lack of transparency exacerbates several other problems typically associated with
these models: they tend to be unstable (Goodfellow, Shlens, and Szegedy 2015),
encode existing biases (Buolamwini and Gebru 2018) and learn representations that
are surprising or even counter-intuitive from a human perspective (Buolamwini and
Gebru 2018). Nonetheless, they often form the basis for data-driven decision-making
systems in real-world applications.

As others have pointed out, this scenario gives rise to an undesirable principal-
agent problem involving a group of principals—i.e. human stakeholders—that fail
to understand the behavior of their agent—i.e. the black-box system (Borch 2022).
The group of principals may include programmers, product managers and other
decision-makers who develop and operate the system as well as those individuals
ultimately subject to the decisions made by the system. In practice, decisions made
by black-box systems are typically left unchallenged since the group of principals
cannot scrutinize them:

“You cannot appeal to (algorithms). They do not listen. Nor do they
bend.” (O’Neil 2016)

In light of all this, a quickly growing body of literature on Explainable Artificial
Intelligence (XAI) has emerged. Counterfactual Explanations fall into this broad
category. They can help human stakeholders make sense of the systems they de-
velop, use or endure: they explain how inputs into a system need to change for it
to produce different decisions. Explainability benefits internal as well as external
quality assurance. Explanations that involve plausible and actionable changes can
be used for Algorithmic Recourse (AR): they offer the group of principals a way to
not only understand their agent’s behavior but also adjust or react to it.

The availability of open-source software to explain black-box models through coun-
terfactuals is still limited. Through the work presented here, we aim to close that
gap and thereby contribute to broader community efforts towards XAI. We envision
this package to one day be the go-to place for Counterfactual Explanations in Julia.


doi.org/10.21105/jcon.00130
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Thanks to Julia’s unique support for interoperability with foreign programming lan-
guages we believe that this library may also benefit the broader machine learning
and data science community.

Our package provides a simple and intuitive interface to generate CE for many
standard classification models trained in Julia, as well as in Python and R. It comes
with detailed documentation involving various illustrative example datasets, models
and counterfactual generators for binary and multi-class prediction tasks. A care-
fully designed package architecture allows for a seamless extension of the package
functionality through custom generators and models.

The remainder of this article is structured as follows: Section 2.2 presents related
work on XAI as well as a brief overview of the methodological framework under-
lying CE. Section 2.3 introduces the Julia package and its high-level architecture.
Section 2.4 presents several basic and advanced usage examples. In Section 2.5 we
demonstrate how the package functionality can be customized and extended. To
illustrate its practical usability, we explore examples involving real-world data in
Section 2.6. Finally, we also discuss the current limitations of our package, as well
as its future outlook in Section 2.7. Section 2.8 concludes.

2.2. BACKGROUND AND RELATED WORK

In this section, we first briefly introduce the broad field of Explainable AI, before nar-
rowing it down to Counterfactual Explanations. We introduce the methodological
framework and finally point to existing open-source software.

2.2.1. LITERATURE ON EXPLAINABLE Al

The field of XAT is still relatively young and made up of a variety of subdomains,
definitions, concepts and taxonomies. Covering all of these is beyond the scope of
this article, so we will focus only on high-level concepts. The following literature
surveys provide more detail: Arrieta et al. (2020) provide a broad overview of
XAT ; Fan, Xiong, and Wang (2020) focus on explainability in the context of deep
learning; and finally, Karimi et al. (2021) and Verma et al. (2022) offer detailed
reviews of the literature on Counterfactual Explanations and Algorithmic Recourse
(see also Molnar (2022) and Varshney (2022)). T. Miller (2019) explicitly discusses
the concept of explainability from the perspective of a social scientist.

The first broad distinction we want to make here is between Interpretable and
Explainable AI. These terms are often used interchangeably, but this can lead to
confusion. We find the distinction made in Rudin (2019) useful: Interpretable AI
involves models that are inherently interpretable and transparent such as general
additive models (GAM), decision trees and rule-based models; Explainable Al in-
volves models that are not inherently interpretable but require additional tools to be
explainable to humans. Examples of the latter include Ensembles, Support Vector
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Machines and Deep Neural Networks. Some would argue that we best avoid the
second category of models altogether and instead focus solely on interpretable Al
Rudin (2019). While we agree that initial efforts should always be geared towards
interpretable models, avoiding black boxes altogether would entail missed opportun-
ities and anyway is probably not very realistic at this point. For that reason, we
expect the need for XAI to persist in the medium term. Explainable Al can further
be broadly divided into global and local explainability: the former is concerned with
explaining the average behavior of a model, while the latter involves explanations
for individual predictions (Molnar 2022). Tools for global explainability include
partial dependence plots (PDP), which involve the computation of marginal effects
through Monte Carlo, and global surrogates. A surrogate model is an interpretable
model that is trained to explain the predictions of a black-box model.

Counterfactual Explanations fall into the category of local methods: they explain
how individual predictions change in response to individual feature perturbations.
Among the most popular alternatives to Counterfactual Explanations are local
surrogate explainers including Local Interpretable Model-agnostic Explanations
(LIME) and Shapley additive explanations (SHAP). Since explanations produced
by LIME and SHAP typically involve simple feature importance plots, they
arguably rely on reasonably interpretable features at the very least. Contrary to
Counterfactual Explanations, for example, it is not obvious how to apply LIME
and SHAP to high-dimensional image data. Nonetheless, local surrogate explainers
are among the most widely used XAl tools today, potentially because they are easy
to interpret and implemented in popular programming languages. Proponents of
surrogate explainers also commonly mention that there is a straightforward way to
assess their reliability: a surrogate model that generates predictions in line with
those produced by the black-box model is said to have high fidelity and therefore
considered reliable. As intuitive as this notion may be, it also points to an obvious
shortfall of surrogate explainers: even a high-fidelity surrogate model that produces
the same predictions as the black-box model 99 per cent of the time is useless and
potentially misleading for every 1 out of 100 individual predictions.

A recent study has shown that even experienced data scientists tend to put too much
trust in explanations produced by LIME and SHAP (Kaur et al. 2020). Another
recent work has shown that both methods can be easily fooled: they depend on
random input perturbations, a property that can be abused by adverse agents to es-
sentially whitewash strongly biased black-box models (Slack et al. 2020). In related
work, the same authors find that while gradient-based Counterfactual Explanations
can also be manipulated, there is a straightforward way to protect against this in
practice (Slack et al. 2021). In the context of quality assessment, it is also worth
noting that—contrary to surrogate explainers—CE always achieve full fidelity by
construction: counterfactuals are searched with respect to the black-box classifier,
not some proxy for it. That being said, CE should also be used with care and
research around them is still in its early stages.
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2.2.2. A FRAMEWORK FOR COUNTERFACTUAL EXPLANATIONS

Counterfactual search involves feature perturbations: we are interested in under-
standing how we need to change individual attributes in order to change the model
output to a desired value or label (Molnar 2022). Typically, the underlying method-
ology is presented in the context of binary classification: M : X + ¥ where X C RP
and ¥ = {0,1}. Further, let ¢ = 1 be the target class and let = denote the factual
feature vector of some individual sample outside the target class, so y = M(z) = 0.
We follow this convention here, though it should be noted that the ideas presented
here also carry over to multi-class problems and regression (Molnar 2022).

The counterfactual search objective originally proposed by Wachter, Mittelstadt,
and Russell (2017) is as follows

min h(z’) s. t. M(z')=t (2.1)
x’eX

where h(-) quantifies how complex or costly it is to go from the factual x to the
counterfactual z’. To simplify things we can restate this constrained objective as
the following unconstrained and differentiable problem:

x = argnglﬁi/nﬁ(M(w’), t) + Ah(x') (2.2)

Here ¢ denotes some loss function targeting the deviation between the target la-
bel and the predicted label and A governs the strength of the complexity penalty.
Provided we have gradient access for the black-box model M the solution to this
problem can be found through gradient descent. This generic framework lays the
foundation for most state-of-the-art approaches to counterfactual search and is also
used as the baseline approach in our package. The hyperparameter A is typically
tuned through grid search or in some sense pre-determined by the nature of the
problem. Conventional choices for ¢ include margin-based losses like cross-entropy
loss and hinge loss. It is worth pointing out that the loss function is typically com-
puted with respect to logits rather than predicted probabilities, a convention that
we have chosen to follow.!

Numerous extensions to this simple approach have been developed since CE were
first proposed in 2017 (see Verma et al. (2022) and Karimi et al. (2021) for sur-
veys). The various approaches largely differ in that they use different flavors of
search objective defined in Equation 3.2. Different penalties are often used to ad-
dress many of the desirable properties of effective CE that have been set out. These
desiderata include: proximity — the distance between factual and counterfactual
features should be small (Wachter, Mittelstadt, and Russell 2017); actionability —

mplementations of loss functions with respect to logits are often numerically more stable. For
example, the logitbinarycrossentropy(§, y) implementation in Flux.Losses (used here) is
more stable than the mathematically equivalent binarycrossentropy(§, y).
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the proposed recourse should be actionable (Ustun, Spangher, and Liu 2019; Poyi-
adzi et al. 2020); plausibility — the counterfactual explanation should be plausible
to a human (Joshi et al. 2019; Schut et al. 2021); sparsity — the counterfactual
explanation should involve as few individual feature changes as possible (Schut et al.
2021); robustness — the counterfactual explanation should be robust to domain and
model shifts (Upadhyay, Joshi, and Lakkaraju 2021); diversity — ideally multiple
diverse counterfactuals should be provided (Mothilal, Sharma, and Tan 2020); and
causality — counterfactuals should respect the structural causal model underlying
the data generating process (Karimi et al. 2020; Karimi, Schélkopf, and Valera
2021).

Beyond gradient-based counterfactual search, which has been the main focus in
our development so far, various methodologies have been proposed that can handle
non-differentiable models like decision trees. We have implemented some of these
approaches and will discuss them further in Section 2.3.2.

2.2.3. EXISTING SOFTWARE

To the best of our knowledge, the package introduced here provides the first imple-
mentation of Counterfactual Explanations in Julia and therefore represents a novel
contribution to the community. As for other programming languages, we are only
aware of one other unifying framework: the Python library CARLA (Pawelczyk
et al. 2021).2 In addition to that, there exists open-source code for some specific
approaches to CE that have been proposed in recent years. The approach-specific
implementations that we have been able to find are generally well-documented, but
exclusively in Python. For example, a PyTorch implementation of a greedy gen-
erator for Bayesian models proposed in Schut et al. (2021) has been released. As
another example, the popular InterpretML library includes an implementation of a
diverse counterfactual generator (Mothilal, Sharma, and Tan 2020).

Generally speaking, software development in the space of XAl has largely focused on
various global methods and surrogate explainers: implementations of PDP, LIME
and SHAP are available for both Python (e.g. 1ime, shap) and R (e.g. lime, iml,
shapper, fastshap). In the Julia space, there exist two packages related to XAT:
firstly, ShapML. j1, which provides a fast implementation of SHAP; and, secondly,
ExplainableAI. jl, which enables users to easily visualise gradients and activation
maps for Flux.j1l models. We also should not fail to mention the comprehensive
Interpretable Al infrastructure, which focuses exclusively on interpretable models.

Arguably the current availability of tools for explaining black-box models in Julia
is limited, but it appears that the community is invested in changing that. The
team behind MLJ. j1, for example, recruited contributors for a project about both

2While we were writing this paper, the R package counterfactuals was released (Dandl et al.
2023). The developers seem to also envision a unifying framework, but the project appears to
still be in its early stages.


https://carla-counterfactual-and-recourse-library.readthedocs.io/en/latest/?badge=latest
https://github.com/interpretml
https://github.com/marcotcr/lime
https://github.com/slundberg/shap
https://cran.r-project.org/web/packages/lime/index.html
https://cran.r-project.org/web/packages/lime/index.html
https://modeloriented.github.io/shapper/
https://github.com/bgreenwell/fastshap
https://github.com/nredell/ShapML.jl
https://github.com/adrhill/ExplainableAI.jl
https://docs.interpretable.ai/stable/IAIBase/data/
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Interpretable and Explainable AI in 2022.3 With our work on Counterfactual Ex-
planations we hope to contribute to these efforts. We think that because of its unique
transparency the Julia language naturally lends itself towards building Trustworthy
AT systems.

2.3. INTRODUCING:. COUNTERFACTUALEXPLANATIONS. JL

Figure 2.1 provides an overview of the package architecture. It is built around two
core modules that are designed to be as extensible as possible through dispatch: 1)
Models is concerned with making any arbitrary model compatible with the pack-
age; 2) Generators is used to implement counterfactual search algorithms. The
core function of the package—generate_counterfactual—uses an instance of type
<:AbstractFittedModel produced by the Models module and an instance of type
<:AbstractGenerator produced by the Generators module. Relating this to the
methodology outlined in Section 2.2.2, the former instance corresponds to the model
M, while the latter defines the rules for the counterfactual search (Equation 3.2).

Models Objectives

DataPreprocessing Generators

AbstractFittedModel AbstractGenerator

CounterfactualData

GenerativeModels

generate_counterfactual

AbstractGenerativeModel CounterfactualExplanation

Evaluation

Figure 2.1. High-level schematic overview of package architecture. Modules are
shown in red, structs in green and functions in purple.

2.3.1. MODELS

The package currently offers native support for models built and trained in Flux
(Mike Innes 2018) as well as a small subset of models made available through MLJ

3For details, see the Google Summer of Code 2022 project proposal: https://julialang.org/jsoc/g
soc/MLJ /#interpretable _machine learning in_julia.



https://fluxml.ai/
https://alan-turing-institute.github.io/MLJ.jl/dev/
https://julialang.org/jsoc/gsoc/MLJ/#interpretable_machine_learning_in_julia
https://julialang.org/jsoc/gsoc/MLJ/#interpretable_machine_learning_in_julia
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(Blaom et al. 2020). While in general it is assumed that users resort to this pack-
age to explain their pre-trained models, we provide a simple API call to train the
following models:

o Linear Classifier (Logistic Regression and Multinomial Logit)

o Multi-Layer Perceptron (Deep Neural Network)

o Deep Ensemble Lakshminarayanan, Pritzel, and Blundell (2017)
o Decision Tree, Random Forest, Gradient Boosted Trees

As we demonstrate below, it is straightforward to extend the package through cus-
tom models. Support for torch models trained in Python or R is also available.

2.3.2. GENERATORS

A large and growing number of counterfactual generators have already been im-
plemented in our package (Table 2.1). At a high level, we distinguish generators
in terms of their compatible model types, their default search space, and their
composability. All “gradient-based” generators are compatible with differentiable
models, e.g. Flux and torch, while “tree-based” generators are only applicable to
models that involve decision trees. Concerning the search space, it is possible to
search counterfactuals in a lower-dimensional latent embedding of the feature space
that implicitly encodes the data-generating process (DGP). To learn the latent em-
bedding, existing work has typically relied on generative models or existing causal
knowledge (Joshi et al. 2019; Karimi, Scholkopf, and Valera 2021). While this no-
tion is compatible with all of our gradient-based generators, only some generators
search a latent space by default. Finally, composability implies that the given gen-
erator can be blended with any other composable generator, which we discuss in
Section 2.4.2.

Beyond these broad technical distinctions, generators largely differ in terms of how
they address the various desiderata mentioned above: ClapROAR aims to preserve
the classifier, i.e. to generate counterfactuals that are robust to endogenous model
shifts (Chapter 3); CLUE searches plausible counterfactuals in the latent embed-
ding of a generative model by explicitly minimizing predictive entropy (Antordn
et al. 2020); DiCFE is designed to generate multiple, maximally diverse counter-
factuals (Mothilal, Sharma, and Tan 2020); FeatureTweak leverages the internals
of decision trees to search counterfactuals on a feature-by-feature basis, finding the
counterfactual that tweaks the features in the least costly way (Tolomei et al. 2017);
Gravitational aims to generate plausible and robust counterfactuals by minimizing
the distance to observed samples in the target class (Chapter 3); Greedy aims to
generate plausible counterfactuals by implicitly minimizing predictive uncertainty
of Bayesian classifiers (Schut et al. 2021); GrowingSpheres is model-agnostic, rely-
ing solely on identifying nearest neighbors of counterfactuals in the target class by

4We are currently relying on PythonCall.j1 and RCall.jl and this functionality is still somewhat
brittle. Since this is more of an edge case, we may move this feature into its own package in
the future.


https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/model_catalogue/
https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/explanation/generators/overview/
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gradually increasing the search radius and then moving counterfactuals in that direc-
tion (Laugel et al. 2017); PROBE generates probabilistically robust counterfactuals
(Pawelczyk et al. 2023); REVISE addresses the need for plausibility by searching
counterfactuals in the latent embedding of a Variational Autoencoder (VAE) (Joshi
et al. 2019); Wachter is the baseline approach that only penalizes the distance to
the original sample (Wachter, Mittelstadt, and Russell 2017).

Table 2.1. Overview of implemented counterfactual generators.

Generator Model Type Search Space Composable

ClaPROAR gradient based feature yes
(Altmeyer, Angela,

et al. 2023)

CLUE (Antorén gradient based latent yes
et al. 2020)

DiCE (Mothilal, gradient based feature yes
Sharma, and Tan

2020)

FeatureTweak tree based feature no
(Tolomei et al.

2017)

Gravitational gradient based feature yes
(Altmeyer, Angela,

et al. 2023)

Greedy (Schut et gradient based feature yes
al. 2021)

GrowingSpheres agnostic feature no
(Laugel et al.

2017)

PROBE gradient based feature no
(Pawelczyk et al.

2023)

REVISE (Joshi et  gradient based latent yes
al. 2019)

Wachter (Wachter, gradient based feature yes
Mittelstadt, and

Russell 2017)

2.3.3. DATA CATALOGUE

To allow researchers and practitioners to test and compare counterfactual gener-
ators, the package ships with catalogues of pre-processed synthetic and real-world
benchmark datasets from different domains. Real-world datasets include:
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o Adult Census (Barry Becker 1996)

« California Housing (Pace and Barry 1997)

o CIFARI10 (Krizhevsky 2009)

o German Credit (Hoffman 1994)

o Give Me Some Credit (Kaggle 2011)

o MNIST (LeCun et al. 1998) and Fashion MNIST (Xiao, Rasul, and Vollgraf
2017)

o UCIT defaultCredit (Yeh and Lien 2009)

Custom datasets can also be easily preprocessed as explained in the documenta-
tion.

2.3.4. PLOTTING

The package also extends common Plots.jl methods to facilitate the visual-
ization of results. Calling the generic plot() method on an instance of type
<:CounterfactualExplanation, for example, generates a plot visualizing the
entire counterfactual path in the feature space®. We will see several examples of
this below.

2.4. BASIC USAGE

In the following, we begin our exploration of the package functionality with a simple
example. We then demonstrate how more advanced generators can be easily com-
posed and show how users can impose mutability constraints on features. Finally,
we also briefly explore the topics of counterfactual evaluation and benchmarking.

2.4.1. A SIMPLE GENERIC GENERATOR

Listing 2.1 provides a complete example demonstrating how the framework presen-
ted in Section 2.2.2 can be implemented through our package: using a synthetic data
set with linearly separable features we first fit a linear classifier; next, we define the
target class and then draw a random sample from the other class; finally, we instan-
tiate a generic generator and run the counterfactual search. Figure 2.2 illustrates
the resulting counterfactual path in the two-dimensional feature space. Features
go through iterative perturbations until the desired confidence level is reached as
illustrated by the contour in the background, which shows the softmax output for
the target class.

5For multidimensional input data, standard dimensionality reduction techniques are used to com-
press the data. In this case, the classifier’s decision boundary is approximated through a Nearest
neighbor model. This is still somewhat experimental and will be improved in the future.
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Listing 2.1 Standard workflow for generating counterfactuals.

# Data and Classifier:
counterfactual_data = load_linearly_separable()
M = fit_model (counterfactual_data, :Linear)

# Factual and Target:

yhat = predict_label(M, counterfactual_data)
target = 2

candidates = findall(vec(yhat) .!= target)
chosen = rand(candidates)

x = select_factual (counterfactual_data, chosen)

# Counterfactual search:
generator = GenericGenerator()
ce = generate_counterfactual(
x, target, counterfactual_data, M, generator)

(» Load synthetic data and fit linear model.

(@ Define the target class.

(3 Draw a random sample from the other class.
@ Instantiate a generic generator.

(® Run the counterfactual search.

@ ®

-2 0

(a) Counterfactual path using generic
counterfactual generator for conven-

i i i tor.
tional binary classifier. generator

Figure 2.2. Counterfactual explanations for a binary classifier.

(b) Counterfactual path using the DiCE

In this simple example, the generic generator produces a valid counterfactual, since
the decision boundary is crossed and the predicted label is flipped. But the coun-
terfactual is not plausible: it does not appear to be generated by the same DGP
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as the observed data in the target class. This is because the generic generator does
not take into account any of the desiderata mentioned in Section 2.2.2, except for
the distance to the factual sample.

2.4.2. COMPOSING GENERATORS

To address these issues, we can leverage the ideas underlying some of the more
advanced counterfactual generators introduced above. In particular, we will now
show how easy it is to compose custom generators that blend different ideas through
user-friendly macros.

Suppose we wanted to address the desiderata of plausibility and diversity. We could
do this by blending ideas underlying the DiCFE generator with the REVISE gener-
ator. Formally, the corresponding search objective would be defined as follows,

Z' =arg min {{(M(f(Z)),t) + X - diversity(f(Z"))} (2.3)

7/ cZLxK

where X’ is an L-dimensional array of counterfactuals, f : 21K » XL*D is a
function that maps the L x K-dimensional latent space Z to the L x D-dimensional
feature space X' and diversity(-) is the penalty proposed by Mothilal, Sharma, and
Tan (2020) that induces diverse sets of counterfactuals. As in Equation 3.2, ¢ is the
loss function, M is the black-box model, t is the target class, and A is the strength
of the penalty.

Listing 2.2 demonstrates how Equation 2.3 can be seamlessly translated into Julia
code. We begin by instantiating a GradientBasedGenerator. Next, we use chained
macros for composition: firstly, we define the counterfactual search @objective
corresponding to DiCE (Mothilal, Sharma, and Tan 2020); secondly, we define the
latent space search strategy corresponding to REVISE (Joshi et al. 2019) using
the @search_latent_space macro; finally, we specify our preferred optimization
method using the @with_optimiser macro.

In this case, the counterfactual search is performed in the latent space of a Vari-
ational Autoencoder (VAE) that is automatically trained on the observed data.
It is important to specify the keyword argument num_counterfactuals of the
generate_counterfactual to some value higher than 1 (default), to ensure that
the diversity penalty is effective. The resulting counterfactual path is shown in Fig-
ure 2.2b below. We observe that the resulting counterfactuals are diverse and the
majority of them are plausible.

2.4.3. MUTABILITY CONSTRAINTS

In practice, features usually cannot be perturbed arbitrarily. Suppose, for example,
that one of the features used by a bank to predict the creditworthiness of its clients
is age. If a counterfactual explanation for the prediction model indicates that older


https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/generators/
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Listing 2.2 Composing a custom generator.

# Composition:
generator = GradientBasedGenerator ()
Ochain generator begin
Q@objective logitcrossentropy
+ 0.2ddp_diversity
Osearch_latent_space
Qwith_optimiser Adam(0.005)
end

®e ® 6

(» Instantiate a GradientBasedGenerator.

(2 Define the counterfactual search @objective corresponding to DiCE (Mothilal,
Sharma, and Tan 2020).

(® Define the latent space search strategy corresponding to REVISE (Joshi et al.
2019).

(@ Specify optimization method.

clients should “grow younger” to improve their creditworthiness, then this is an
interesting insight (it reveals age bias), but the provided recourse is not actionable.
In such cases, we may want to constrain the mutability of features. To illustrate
how this can be implemented in our package, we will continue with the example
from above.

Mutability can be defined in terms of four different options: 1) the feature is mutable
in both directions, 2) the feature can only increase (e.g. age), 3) the feature can only
decrease (e.g. time left until your next deadline) and 4) the feature is not mutable
(e.g. skin colour, ethnicity, ..). To specify which category a feature belongs to,
users can pass a vector of symbols containing the mutability constraints at the pre-
processing stage. For each feature one can choose from these four options: :both
(mutable in both directions), :increase (only up), :decrease (only down) and
:none (immutable). By default, nothing is passed to that keyword argument and
it is assumed that all features are mutable in both directions.®

We can impose that the first feature is immutable as follows:

counterfactual_data.mutability = [:none, :both]

The resulting counterfactual path is shown in Figure 2.3 below. Since only the
second feature can be perturbed, the sample can only move along the vertical axis.
In this case, the counterfactual search does not yield a valid counterfactual, since
the target class is not reached.

SMutability constraints are not yet implemented for Latent Space search.
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Figure 2.3. Counterfactual path with immutable feature.

2.4.4. EVALUATION AND BENCHMARKING

The package also makes it easy to evaluate counterfactuals with respect to many
of the desiderata mentioned above. For example, users may want to infer how
costly the provided recourse is to individuals. To this end, we can measure the
distance of the counterfactual from its original value. The API call to compute the
distance metric defined in Wachter, Mittelstadt, and Russell (2017), for instance, is
as simple as evaluate(ce; measure=distance_mad), where ce can also be a vector
of CounterfactualExplanations.

Additionally, the package provides a benchmarking framework that allows users to
compare the performance of different generators on a given dataset. In Figure 2.4
we show the results of a benchmark comparing several generators in terms of the
average cost and implausibility of the generated counterfactuals. The cost is proxied
by the L1-norm of the difference between the factual and counterfactual features,
while implausibility is measured by the distance of the counterfactuals from samples
in the target class. The results illustrate that there is a tradeoff between minimizing
costs to individuals and generating plausible counterfactuals.

2.5. CUSTOMIZATION AND EXTENSIBILITY

One of our priorities has been to make our package customizable and extensible. In
the long term, we aim to add support for more default models and counterfactual
generators. In the short term, it is designed to allow users to integrate models
and generators themselves. These community efforts will facilitate our long-term
goals.


https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/evaluation/
https://juliatrustworthyai.github.io/CounterfactualExplanations.jl/v0.1/tutorials/benchmarking/
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Figure 2.4. Benchmarking results for different generators.

2.5.1. ADDING CUSTOM MODELS

At the high level, only two steps are necessary to make any supervised learning
model compatible with our package:

o Subtyping: We need to subtype the AbstractFittedModel.
« Dispatch: The functionslogits and probs need to be extended through cus-
tom methods for the model in question.

To demonstrate how this can be done in practice, we will reiterate here how native
support for Flux.jl (Mike Innes 2018) deep learning models was enabled.” Once
again we use synthetic data for an illustrative example. Listing 2.3 below builds a
simple model architecture that can be used for a multi-class prediction task. Note
how outputs from the final layer are not passed through a softmax activation func-
tion, since the counterfactual loss is evaluated with respect to logits as we discussed
earlier. The model is trained with dropout.

Listing 2.4 implements the two steps that were necessary to make Flux models
compatible with the package. First, we declare our new struct as a subtype
of AbstractDifferentiableModel, which itself is an abstract subtype of
AbstractFittedModel.® Computing logits amounts to just calling the model on

"Flux models are now natively supported by our package and can be instantiated by calling
FluxModel ().

8Note that we also provide a field determining the likelihood. This is optional and only used
internally to determine which loss function to use in the counterfactual search. If this field is
not provided to the model, the loss function needs to be explicitly supplied to the generator.
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Listing 2.3 A simple neural network model.

n_hidden = 32

output_dim = size(y,1)

input_dim = 2

activation =

model = Flux.Chain(
Dense(input_dim, n_hidden, activation),
Dropout(0.1),
Dense(n_hidden, output_dim)

Listing 2.4 A wrapper for Flux models.

# Step 1)

struct MyFluxModel <: AbstractDifferentiableModel
model: : Any
likelihood: :Symbol

end

# Step 2)

# import functions in order to extend

import CounterfactualExplanations.Models: logits

import CounterfactualExplanations.Models: probs

logits(M: :MyFluxModel, X::AbstractArray) = M.model (X)

probs(M: :MyFluxModel, X::AbstractArray) = softmax(logits(M, X))
M = MyFluxModel (model, :classification_multi)

(® Declare new struct as a subtype of AbstractDifferentiableModel.

®

(@ Optional field specifying the likelihood (used internally to guess loss function).
(® Instantiate custom model by wrapping the neural network (Listing 2.3) and

specifying likelihood.

inputs. Predicted probabilities for labels can be computed by passing logits through

the softmax function.

The API call for generating counterfactuals for our new model is the same as before.
Figure 2.5a shows the resulting counterfactual path for a randomly chosen sample.
In this case, the contour shows the predicted probability that the input is in the

target class (t = 2).
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4

(a) Counterfactual path using generic
counterfactual generator for multi-
class classifier.

(b) Counterfactual path for a generator
with dropout.

Figure 2.5. Counterfactual explanations for custom models and generators.

2.5.2. ADDING CUSTOM GENERATORS

In some cases, composability may not be sufficient to implement specific logics
underlying certain counterfactual generators. In such cases, users may want to
implement custom generators. To illustrate how this can be done we will consider a
simple extension of our GenericGenerator. As we have seen above, Counterfactual
Explanations are not unique. In light of this, we might be interested in quantifying
the uncertainty around the generated counterfactuals (Delaney, Greene, and Keane
2021). One idea could be, to use dropout to randomly switch features on and off
in each iteration. Without dwelling further on the merit of this idea, we will now
briefly show how this can be implemented.

2.5.21. A GENERATOR WITH DROPOUT

Listing 2.5 implements two important steps: 1) create an abstract subtype of the
AbstractGradientBasedGenerator and 2) create a constructor with an additional
field for the dropout probability.

Next, in Listing 2.6 we define how feature perturbations are generated for our custom
dropout generator: in particular, we extend the relevant function through a method
that implements the dropout logic.

Finally, we proceed to generate counterfactuals in the same way we always do. The
resulting counterfactual path is shown in Figure 2.5b.
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Listing 2.5 Building a custom generator with dropout.

# Abstract suptype:
abstract type

AbstractDropoutGenerator <: AbstractGradientBasedGenerator
end

# Constructor:

struct DropoutGenerator <: AbstractDropoutGenerator
loss: :Function # loss function
penalty: :Function
::AbstractFloat # strength of penalty
latent_space: :Bool
opt::Any # optimizer
p_dropout: :AbstractFloat # dropout rate

end

(@ Create an abstract subtype of the AbstractGradientBasedGenerator.
(@ Create a constructor with an additional field for the dropout probability.

Listing 2.6 Generating feature perturbations with dropout.

using CounterfactualExplanations.Generators

using StatsBase

function Generators.generate_perturbations(
generator: :AbstractDropoutGenerator,
ce: :CounterfactualExplanation

s = deepcopy(ce.s )
new_s = Generators.propose_state(generator, ce)
As = new_s - s # gradient step

# Dropout:

set_to_zero = sample(
1:length(As ),
Int (round(generator.p_dropout*length(As ))),
replace=false

)

As [set_to_zero] .= 0

return As

end
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2.6. REAL-WORLD EXAMPLES

Now that we have explained the basic functionality of CounterfactualExplanations.jl

through some synthetic examples, it is time to work through examples involving
real-world data.

2.6.1. GIVE ME SOME CREDIT

The Give Me Some Credit dataset is one of the tabular real-world datasets that ship
with the package (Kaggle 2011). It can be used to train a binary classifier to predict
whether a borrower is likely to experience financial difficulties in the next two years.
In particular, we have an output variable y € {0 = no stress,1 = stress} and
a feature matrix X that includes socio-demographic variables like age and income.
A retail bank might use such a classifier to determine if potential borrowers should
receive credit or not.

For the classification task, we use a Multi-Layer Perceptron with dropout regulariza-
tion. Using the Gravitational generator (Chapter 3) we will generate counterfactuals
for ten randomly chosen individuals that would be denied credit based on our pre-
trained model. Concerning the mutability of features, we only impose that the age
cannot be decreased.

Figure 2.6 shows the resulting counterfactuals proposed by Wachter in the two-
dimensional feature space spanned by the age and income variables. An increase
in income and age is recommended for the majority of individuals, which seems
plausible: both age and income are typically positively related to creditworthiness.

@ Loan denied
) Loan provided

L I 1 1

—0.4 -0.2 0.0 0.2
Income

Figure 2.6. Give Me Some Credit: counterfactuals for would-be borrowers proposed
by the Gravitational Generator.

2.6.2. MNIST

For our second example, we will look at image data. The MNIST dataset contains
60,000 training samples of handwritten digits in the form of 28x28 pixel grey-scale
images (LeCun et al. 1998). Each image is associated with a label indicating the
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digit (0-9) that the image represents. The data makes for an interesting case study
of CE because humans have a good idea of what plausible counterfactuals of digits
look like. For example, if you were asked to pick up an eraser and turn the digit in
the left panel of Figure 2.7 into a four (4) you would know exactly what to do: just
erase the top part.

Listing 2.7 Loading pre-trained models and data for MNIST.

counterfactual_data = load_mnist()

X, y = unpack_data(counterfactual_data)
input_dim, n_obs = size(counterfactual_data.X)
M = load_mnist_mlp()

vae = load_mnist_vae()

vae_weak = load_mnist_vae(;strong=false)

On the model side, we will use a simple multi-layer perceptron (MLP). Listing 2.7
loads the data and the pre-trained MLP. It also loads two pre-trained Variational
Auto-Encoders, which will be used by our counterfactual generator of choice for this
task: REVISE.

The proposed counterfactuals are shown in Figure 2.7. In the case in which REVISE
has access to an expressive VAE (centre), the result looks convincing: the perturbed
image does look like it represents a four (4). In terms of explainability, we may
conclude that removing the top part of the handwritten nine (9) leads the black-box
model to predict that the perturbed image represents a four (4). We should note,
however, that the quality of counterfactuals produced by REVISE hinges on the
performance of the underlying generative model, as demonstrated by the result on
the right. In this case, REVISE uses a weak VAE and the resulting counterfactual
is invalid. In light of this, we recommend using Latent Space search with care.

Factual REVISE (strong VAE) REVISE (weak VAE)

i

Figure 2.7. Counterfactual explanations for MNIST using a Latent Space generator:
turning a nine (9) into a four (4).
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2.7. DISCUSSION AND OUTLOOK

We believe that this package in its current form offers a valuable contribution to
ongoing efforts towards XAI in Julia. That being said, there is significant scope for
future developments, which we briefly outline in this final section.

2.7.1. CANDIDATE MODELS AND GENERATORS

The package supports various models and generators either natively or through
minimal augmentation. In future work, we would like to prioritize the addition of
further predictive models and generators. Concerning the former, it would be useful
to add native support for any supervised models built in MLJ.jl, an extensive
Machine Learning framework for Julia (Blaom et al. 2020). This may also involve
adding support for regression models as well as additional non-differentiable models.
In terms of counterfactual generators, there is a list of recent methodologies that
we would like to implement including MINT (Karimi, Scholkopf, and Valera 2021),
ROAR (Upadhyay, Joshi, and Lakkaraju 2021) and FACE (Poyiadzi et al. 2020).

2.7.2. ADDITIONAL DATASETS

For benchmarking and testing purposes it will be crucial to add more datasets to our
library. We have so far prioritized tabular datasets that have typically been used in
the literature on counterfactual explanations including Adult, Give Me Some Credit
and German Credit (Karimi et al. 2021). There is scope for adding data sources
that have so far not been explored much in this context including additional image
datasets as well as audio, natural language and time-series data.

2.8. CONCLUDING REMARKS

CounterfactualExplanation.jl is a package for generating Counterfactual Ex-
planations and Algorithmic Recourse in Julia. Through various synthetic and real-
world examples, we have demonstrated the basic usage of the package as well as
its extensibility. The package has already served us in our research to benchmark
various methodological approaches to Counterfactual Explanations and Algorithmic
Recourse. We therefore strongly believe that it should help other practitioners and
researchers in their own efforts towards Trustworthy Al.

We envision this package to one day constitute the go-to place for explaining ar-
bitrary predictive models through an extensive suite of counterfactual generators.
As a major next step, we aim to make our library as compatible as possible with
the popular MLJ.jl package for machine learning in Julia. We invite the Julia
community to contribute to these goals through usage, open challenge and active
development.



https://alan-turing-institute.github.io/MLJ.jl/dev/

40 2. EXPLAINING BLACK-BOX MODELS THROUGH CE.JL

2.9. ACKNOWLEDGEMENTS

We are immensely grateful to the group of TU Delft students who contributed huge
improvements to this package as part of a university project in 2023: Rauno Arike,
Simon Kasdorp, Lauri Keskiill, Mariusz Kicior, Vincent Pikand. We also want to
thank the broader Julia community for being welcoming and open and for supporting
research contributions like this one. Some of the members of TU Delft were partially
funded by ICAI AI for Fintech Research, an ING—TU Delft collaboration.



ENDOGENOUS MACRODYNAMICS
IN ALGORITHMIC RECOURSE

Existing work on Counterfactual Explanations (CE) and Algorithmic Recourse (AR)
has largely focused on single individuals in a static environment: given some estim-
ated model, the goal is to find valid counterfactuals for an individual instance that
fulfill various desiderata. The ability of such counterfactuals to handle dynamics
like data and model drift remains a largely unexplored research challenge. There
has also been surprisingly little work on the related question of how the actual im-
plementation of recourse by one individual may affect other individuals. Through
this work, we aim to close that gap. We first show that many of the existing meth-
odologies can be collectively described by a generalized framework. We then argue
that the existing framework does not account for a hidden external cost of recourse,
that only reveals itself when studying the endogenous dynamics of recourse at the
group level. Through simulation experiments involving various state-of-the-art coun-
terfactual generators and several benchmark datasets, we generate large numbers
of counterfactuals and study the resulting domain and model shifts. We find that
the induced shifts are substantial enough to likely impede the applicability of Al-
gorithmic Recourse in some situations. Fortunately, we find various strategies to
mitigate these concerns. Our simulation framework for studying recourse dynamics
is fast and open-sourced.
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This chapter was published in 2023 IEEE Conference on Secure and Trust-
worthy Machine Learning (SaTML) by Patrick Altmeyer, Giovan Angela,
Aleksander Buszydlik, Karol Dobiczek, Arie van Deursen and Cynthia C. S.
Liem (2023). See Chapter 1.8 for additional publication details.

3.1. INTRODUCTION

Recent advances in Artificial Intelligence (AI) have propelled its adoption in sci-
entific domains outside of Computer Science including Healthcare, Bioinformatics,
Genetics and the Social Sciences. While this has in many cases brought benefits
in terms of efficiency, state-of-the-art models like Deep Neural Networks (DNN)
have also given rise to a new type of problem in the context of data-driven decision-
making. They are essentially black boxes: so complex, opaque and underspecified in
the data that it is often impossible to understand how they actually arrive at their
decisions without auxiliary tools. Despite this shortcoming, black-box models have
grown in popularity in recent years and have at times created undesirable societal
outcomes (O’Neil 2016). The scientific community has tackled this issue from two
different angles: while some have appealed for a strict focus on inherently inter-
pretable models (Rudin 2019), others have investigated different ways to explain
the behavior of black-box models. These two subdomains can be broadly referred
to as interpretable AI and explainable AI (XAI), respectively.

Among the approaches to XAI that have recently grown in popularity are Counter-
factual Explanations (CE). They explain how inputs into a model need to change for
it to produce different outputs. Counterfactual Explanations that involve realistic
and actionable changes can be used for the purpose of Algorithmic Recourse (AR)
to help individuals who face adverse outcomes. An example relevant to the Social
Sciences is consumer credit: in this context, AR can be used to guide individuals
in improving their creditworthiness, should they have previously been denied access
to credit based on an automated decision-making system. A meaningful recourse
recommendation for a denied applicant could be: “If your net savings rate had been
10% of your monthly income instead of the actual 8%, your application would have
been successful. See if you can temporarily cut down on consumption.” In the re-
mainder of this paper, we will use both terminologies—recourse and counterfactual—
interchangeably to refer to situations where counterfactuals are generated with the
intent to provide individual recourse.

Existing work in this field has largely worked in a static setting: various approaches
have been proposed to generate counterfactuals for a given individual that is subject
to some pre-trained model. More recent work has compared different approaches
within this static setting (Pawelczyk et al. 2021). In this work, we go one step
further and ask ourselves: what happens if recourse is provided and implemented
repeatedly? What types of dynamics are introduced, and how do different counter-
factual generators compare in this context?


https://doi.org/10.1109/SaTML54575.2023
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Research on Algorithmic Recourse has also so far typically addressed the issue from
the perspective of a single individual. Arguably though, most real-world applications
that warrant AR involve potentially large groups of individuals typically competing
for scarce resources. Our work demonstrates that in such scenarios, choices made
by or for a single individual are likely to affect the broader collective of individuals
in ways that many current approaches to AR fail to account for. More specifically,
we argue that a strict focus on minimizing the private costs to individuals may be
too narrow an objective.

Figure 3.1 illustrates this idea for a binary problem involving a linear classifier and
the counterfactual generator proposed by Wachter, Mittelstadt, and Russell (2017):
the implementation of AR for a subset of samples from the negative class (orange)
immediately leads to a visible domain shift in the (blue) target class (b), which in
turn triggers a model shift (c). As this game of implementing AR and updating
the classifier is repeated, the decision boundary moves away from training samples
that were originally in the target class (d). We refer to these types of dynamics as
endogenous because they are induced by the implementation of recourse itself. The
term macrodynamics is borrowed from the economics literature and used to describe
processes involving whole groups or societies.

Figure 3.1. Dynamics in Algorithmic Recourse: (a) we have a simple linear classifier
trained for binary classification where samples from the negative class
(y = 0) are marked in orange and samples of the positive class (y = 1)
are marked in blue; (b) the implementation of AR for a random subset of
samples from the orange class leads to a noticeable domain shift, as the
samples that have received recourse form a distinct new (blue) cluster;
(c) as the classifier is retrained we observe a corresponding model shift;
(d) as this process is repeated, the decision boundary moves away from
the target class.

We think that these types of endogenous dynamics may be problematic and deserve
our attention. From a purely technical perspective, we note the following: firstly,
model shifts may inadvertently change classification outcomes for individuals who
never received recourse. Secondly, we observe in Figure 3.1 that as the decision
boundary moves in the direction of the non-target class, counterfactual paths be-
come shorter. We think that in some practical applications, this can be expected
to generate costs for involved stakeholders. To follow our argument, consider the
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following two examples:

Example 3.1 (Consumer Credit). Suppose Figure 3.1 relates to an automated
decision-making system used by a retail bank to evaluate credit applicants with
respect to their creditworthiness. Assume that the two features are meaningful in
the sense that creditworthiness decreases in the bottom-right direction. Then we
can think of the outcome in panel (d) as representing a situation where the bank
supplies credit to more borrowers (blue), but these borrowers are on average less
creditworthy and more of them can be expected to default on their loan. This
represents a cost to the retail bank.

Example 3.2 (Student Admission). Suppose Figure 3.1 relates to an automated
decision-making system used by a university in its student admission process. As-
sume that the two features are meaningful in the sense that the likelihood of students
completing their degree decreases in the bottom-right direction. Then we can think
of the outcome in panel (b) as representing a situation where more students are
admitted to university (blue), but they are more likely to fail their degree than
students that were admitted in previous years. The university admission commit-
tee catches on to this and suspends its efforts to offer Algorithmic Recourse. This
represents an opportunity cost to future student applicants, that may have derived
utility from being offered recourse.

Both examples are exaggerated simplifications of potential real-world scenarios, but
they serve to illustrate the point that recourse for one single individual may exert
negative externalities on other individuals.

To the best of our knowledge, this is the first work investigating endogenous macro-
dynamics in AR. Our contributions to the state of knowledge are as follows: firstly,
we posit a compelling argument that calls for a novel perspective on Algorithmic
Recourse extending our focus from single individuals to groups (Sections Section 3.2
and Section 3.3). Secondly, we introduce an experimental framework extending pre-
vious work by Altmeyer, Deursen, and Liem (2023a) (Chapter 2), which enables us
to study macrodynamics of Algorithmic Recourse through simulations that can be
fully parallelized (Section Section 3.4). Thirdly, we use this framework to provide
a first in-depth analysis of endogenous recourse dynamics induced by various popu-
lar counterfactual generators proposed in Wachter, Mittelstadt, and Russell (2017),
Schut et al. (2021), Joshi et al. (2019), Mothilal, Sharma, and Tan (2020) and
Antoran et al. (2020) (Section 3.5 and Section 3.6). Fourthly, given that we find a
substantial impact of recourse, we propose and assess various mitigation strategies
(Section Section 3.7). Finally, we discuss our findings in the broader context of
the literature in Section Section 3.8, before pointing to some of the limitations of
our work as well as avenues for future research in Section Section 3.9. Section
Section 3.10 concludes.
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3.2. BACKGROUND

In this section, we provide a review of the relevant literature. First, Subsection
Section 3.2.1 discusses the existing research within the domain of Counterfactual
Explanations and Algorithmic Recourse. Then, Subsection Section 3.2.2 presents
some of the previous work on the measurement of data and model shifts.

3.2.1. ALGORITHMIC RECOURSE

A framework for Counterfactual Explanations was first proposed by Wachter, Mit-
telstadt, and Russell (2017) and has served as the baseline for many methodologies
that have been proposed since then. Let M : X + Y denote some pre-trained
model that maps from inputs X € X to outputs Y € Y. Then we are interested
in minimizing the cost’ C' = cost(2’) incurred by individual x when moving to a
counterfactual state z” such that the predicted outcome M (z”) corresponds to some
target outcome y*:

min cost(z’) s. t. M(z')=y" (3.1)

z'eX

For implementation purposes, [eq:obj] is typically approximated through regulariz-
ation:

¢’ = argminyloss(M(2),y") + Acost(z”) (3.2)

In the baseline work (Wachter, Mittelstadt, and Russell 2017), the cost function is
proxied by some distance metric based on the simple intuition that perturbations of
x are costly to the individual. For models that are differentiable and produce smooth
predictions, [eq:solution] can be solved through gradient descent. This summarizes
the approach followed in Wachter, Mittelstadt, and Russell (2017) which we refer to
simply as Wachter, the name of the first author, in the remainder of this paper.

Many approaches for the generation of Algorithmic Recourse have been described in
the literature since 2017. An October 2020 survey laid out 60 algorithms that have
been proposed since 2014 (Karimi et al. 2021). Another survey published around
the same time described 29 algorithms (Verma et al. 2022). Different approaches
vary primarily in terms of the objective functions they impose, how they optim-
ize said objective (from brute force through gradient-based approaches to graph
traversal algorithms), and how they ensure that certain requirements for CE are
met. Regarding the latter, the literature has produced an extensive list of desid-
erata each addressing different needs. To name but a few, we are interested in
generating counterfactuals that are close (Wachter, Mittelstadt, and Russell 2017),
actionable (Ustun, Spangher, and Liu 2019), realistic (Schut et al. 2021), sparse,

IEquivalently, others have referred to this quantity as complezity or simply distance.
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diverse (Mothilal, Sharma, and Tan 2020) and if possible causally founded (Karimi,
Scholkopf, and Valera 2021).

Efforts so far have largely been directed at improving the quality of Counterfactual
Explanations within a static context: given some pre-trained classifier M : X' — Y,
we are interested in generating one or multiple meaningful Counterfactual Explan-
ations for some individual characterized by x. The ability of Counterfactual Ex-
planations to handle dynamics like data and model shifts remains a largely unex-
plored research challenge at this point (Verma et al. 2022). We have been able
to identify only one recent work that considers the implications of exogenous do-
main and model shifts in the context of AR (Upadhyay, Joshi, and Lakkaraju 2021).
Exogenous shifts are strictly of external origin. For example, they might stem from
data correction, temporal shifts or geospatial changes. Upadhyay, Joshi, and Lakka-
raju (2021) propose ROAR: a framework for Algorithmic Recourse that evidently
improves robustness to such exogenous shifts.

As mentioned earlier, research has so far also generally focused on generating coun-
terfactuals for single individuals or instances. We have been able to identify only
one existing work that investigates black-box model behavior towards a group of
individuals (Carrizosa, Ramirez-Ayerbe, and Romero 2021). The authors propose
an optimization framework that generates collective counterfactuals. We provide
a motivation for doing so from the perspective of endogenous macrodynamics of
Algorithmic Recourse.

3.2.2. DOMAIN AND MODEL SHIFTS

Much attention has been paid to the detection of dataset shifts — situations where
the distribution of data changes over time. Rabanser, Giinnemann, and Lipton
(2019) suggest a framework to detect data drift from a minimal number of samples
through the application of two-sample tests. This task is a generalization of the
anomaly detection problem for large datasets, which aims to answer the question if
two sets of samples could have been generated from the same probability distribu-
tion. Numerous approaches to anomaly detection have been summarized (Chandola,
Banerjee, and Kumar 2009). Another well-established research topic is concept drift:
situations where external variables influence the patterns between the input and the
output of a model (Widmer and Kubat 1996). For instance, Gama et al. (2014) offer
a review of the adaptive learning techniques which can handle concept drift. Less
previous work is available on the related topic of model drift: changes in model
performance over time. Nelson et al. (2015) review how resistant different machine
learning models are to model drift. Ackerman et al. (2021) offer a method to detect
changes in model performance when ground truth is not available.

In the context of Algorithmic Recourse, domain and model shifts were first brought
up by the authors behind ROAR (Upadhyay, Joshi, and Lakkaraju 2021). In their
work, they refer to model shifts as simply any perturbation A to the parameters of
the model in question: M. While this also sets the baseline for our analysis here, it



3.3. GRADIENT-BASED RECOURSE REVISITED 47

is worth noting that in Upadhyay, Joshi, and Lakkaraju (2021) these perturbations
are mechanically introduced. In contrast, we are interested in quantifying model
shifts that arise endogenously as part of a dynamic recourse process. In addition to
quantifying the magnitude of shifts A, we aim to also analyze the characteristics of
changes to the model, such as the position of the decision boundary and the overall
decisiveness of the model. We have not been able to identify previous work on this
topic.

3.2.3. BENCHMARKING COUNTERFACTUAL GENERATORS

Despite the large and growing number of approaches to counterfactual search, there
have been surprisingly few benchmark studies that compare different methodolo-
gies. This may be partially due to limited software availability in this space. Recent
work has started to address this gap: firstly, de Oliveira and Martens (2021) run
a large benchmarking study using different algorithmic approaches and numerous
tabular datasets; secondly, Pawelczyk et al. (2021) introduce a Python framework—
CARLA—that can be used to apply and benchmark different methodologies; fi-
nally, CounterfactualExplanations.jl (Chapter 2) provides an extensible and
fast implementation in Julia. Since the experiments presented here involve extens-
ive simulations, we have relied on and extended the Julia implementation due to
the associated performance benefits. In particular, we have built a framework on
top of CounterfactualExplanations. j1 that extends the functionality from static
benchmarks to simulation experiments: AlgorithmicRecourseDynamics.j1%. The
core concepts implemented in that package reflect what is presented in Section Sec-
tion 3.4 of this paper.

3.3. GRADIENT-BASED RECOURSE REVISITED

In this section, we first set out a generalized framework for gradient-based counter-
factual search that encapsulates the various Individual Recourse methods we have
chosen to use in our experiments (Section Section 3.3.1). We then introduce the
notion of a hidden external cost in Algorithmic Recourse and extend the existing
framework to explicitly address this cost in the counterfactual search objective (Sec-
tion Section 3.3.2).

3.3.1. FROM INDIVIDUAL RECOURSE ...

We have chosen to focus on gradient-based counterfactual search for two reasons:
firstly, they can be seen as direct descendants of our baseline method (Wachter);
secondly, gradient-based search is particularly well-suited for differentiable black-
box models like deep neural networks, which we focus on in this work. In particular,

2The code has been released as a  package: https://github.com/pat-
alt/AlgorithmicRecourseDynamics.jl.


https://github.com/pat-alt/CounterfactualExplanations.jl
https://github.com/pat-alt/CounterfactualExplanations.jl
(https://github.com/pat-alt/AlgorithmicRecourseDynamics.jl)

48 3. ENDOGENOUS MACRODYNAMICS IN ALGORITHMIC RECOURSE

we include the following generators in our simulation experiments below: REVISE
(Joshi et al. 2019), CLUE (Antoran et al. 2020), DiCE (Mothilal, Sharma, and Tan
2020) and a greedy approach that relies on probabilistic models (Schut et al. 2021).
Our motivation for including these different generators in our analysis is that they
all offer slightly different approaches to generating meaningful counterfactuals for
differentiable black-box models. We hypothesize that generating more meaningful
counterfactuals should mitigate the endogenous dynamics illustrated in Figure 3.1
in Section 3.1. This intuition stems from the underlying idea that more meaningful
counterfactuals are generated by the same or at least a very similar data-generating
process as the observed data. All else equal, counterfactuals that fulfil this basic
requirement should be less prone to trigger shifts.

As we will see next, all of them can be described by the following generalized form
of Equation 3.2:

8" = argmin {yloss(M(f(s)),y") + Acost(f(s'))} (3.3)

Here s” = {s}} . is a K-dimensional array of counterfactual states and f: S > X
maps from the counterfactual state space to the feature space. In Wachter, the state
space is the feature space: f is the identity function and the number of counter-
factuals K is one. Both REVISE and CLUE search counterfactuals in some latent
space S instead of the feature space directly. The latent embedding is learned by a
separate generative model that is tasked with learning the data-generating process
(DGP) of X. In this case, f in Equation 5.1 corresponds to the decoder part of
the generative model, that is the function that maps back from the latent space to
inputs. Provided the generative model is well-specified, traversing the latent embed-
ding typically yields meaningful counterfactuals since they are implicitly generated
by the (learned) DGP (Joshi et al. 2019).

CLUE distinguishes itself from REVISE and other counterfactual generators in that
it aims to minimize the predictive uncertainty of the model in question, M. To
quantify predictive uncertainty, Antorén et al. (2020) rely on entropy estimates for
probabilistic models. The greedy approach proposed by Schut et al. (2021), which
we refer to as Greedy, also works with the subclass of models M C M that can
produce predictive uncertainty estimates. The authors show that in this setting the
cost function cost(-) in Equation 5.1 is redundant and meaningful counterfactuals
can be generated in a fast and efficient manner through a modified Jacobian-based
Saliency Map Attack (JSMA). Schut et al. (2021) also show that by maximizing
the predicted probability of x” being assigned to target class y*, we also implicitly
minimize predictive entropy (as in CLUE). In that sense, CLUE can be seen as
equivalent to REVISE in the Bayesian context and we shall therefore refer to both
approaches collectively as Latent Space generators®.

3In fact, there are several other recently proposed approaches to counterfactual search that also
broadly fall in this same category. They largely differ with respect to the chosen generative
model: for example, the generator proposed by Dombrowski, Gerken, and Kessel (2021) relies
on normalizing flows.
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Finally, DiCE (Mothilal, Sharma, and Tan 2020) distinguishes itself from all other
generators considered here in that it aims to generate a diverse set of K > 1 counter-
factuals. Wachter, Mittelstadt, and Russell (2017) show that diverse outcomes can
in principle be achieved simply by rerunning counterfactual search multiple times
using stochastic gradient descent (or by randomly initializing the counterfactual)*.
In Mothilal, Sharma, and Tan (2020) diversity is explicitly proxied via Determin-
antal Point Processes (DDP): the authors introduce DDP as a component of the
cost function cost(s’) and thereby produce counterfactuals si, ..., sy that look as
different from each other as possible. The implementation of DiCE in our library of
choice—CounterfactualExplanations. jl—uses that exact approach. It is worth
noting that for £ = 1, DiCE reduces to Wachter since the DDP is constant and
therefore does not affect the objective function in Equation 5.1.

3.3.2. ... TOWARDS COLLECTIVE RECOURSE

All of the different approaches introduced above tackle the problem of Algorithmic
Recourse from the perspective of one single individual®. To explicitly address the
issue that Individual Recourse may affect the outcome and prospect of other indi-
viduals, we propose to extend Equation 5.1 as follows:

s = argipeirgl{ylosS(M(f(S/)% y)
+ Ajcost(f(s")) + Aqexteost(f(s”))}

(3.4)

Here cost(f(s")) denotes the proxy for private costs faced by the individual as before
and \; governs to what extent that private cost ought to be penalized. The newly in-
troduced term extcost(f(s")) is meant to capture and address external costs incurred
by the collective of individuals in response to changes in s’. The underlying concept
of private and external costs is borrowed from Economics and well-established in
that field: when the decisions or actions by some individual market participant gen-
erate external costs, then the market is said to suffer from negative externalities and
is considered inefficient (Pindyck and Rubinfeld 2014). We think that this concept
describes the endogenous dynamics of algorithmic recourse observed here very well.
As with Individual Recourse, the exact choice of extcost(+) is not obvious, nor do we
intend to provide a definitive answer in this work, if such even exists. That being
said, we do propose a few potential mitigation strategies in Section 3.7.

4Note that Equation 5.1 naturally lends itself to that idea: setting K to some value greater than
one and using the Wachter objective essentially boils down to computing multiple counterfactu-
als in parallel. Here, yloss(-) is first broadcasted over elements of s’ and then aggregated. This
is exactly how counterfactual search is implemented in CounterfactualExplanations.jl.

5DiCE recognizes that different individuals may have different objective functions, but it does not
address the interdependencies between different individuals.
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3.4. MODELLING ENDOGENOUS MACRODYNAMICS IN AR

In the following, we describe the framework we propose for modelling and analyzing
endogenous macrodynamics in Algorithmic Recourse. We introduce this framework
with the ambition to shed light on the following research questions:

Research Question 3.1 (Endogenous Shifts). Does the repeated implementation of
recourse provided by state-of-the-art generators lead to shifts in the domain and
model?

Research Question 3.2 (Costs). If so, are these dynamics substantial enough to be
considered costly to stakeholders involved in real-world automated decision-making
processes?

Research Question 3.3 (Heterogeneity). Do different counterfactual generators yield
significantly different outcomes in this context? Furthermore, is there any hetero-
geneity concerning the chosen classifier and dataset?

Research Question 3.4 (Drivers). What are the drivers of endogenous dynamics in
Algorithmic Recourse?

Below we first describe the basic simulations that were generated to produce the find-
ings in this work and also constitute the core of AlgorithmicRecourseDynamics. j1—
the Julia package we introduced earlier. The remainder of this section then
introduces various evaluation metrics that can be used to benchmark different
counterfactual generators with respect to how they perform in the dynamic
setting.

3.4.1. SIMULATIONS

The dynamics illustrated in Figure 3.1 were generated through a simple experiment
that aims to simulate the process of Algorithmic Recourse in practice. We begin in
the static setting at time ¢t = 0: firstly, we have some binary classifier M that was
pre-trained on data D = D, U D,, where D, and D; denote samples in the non-
target and target class, respectively; secondly, we generate recourse for a random
batch of B individuals in the non-target class (2,). Note that we focus our attention
on classification problems since classification poses the most common use-case for

recourse6 .

In order to simulate the dynamic process, we suppose that the model M is retrained
following the actual implementation of recourse in time ¢ = 0. Following the update
to the model, we assume that at time ¢ = 1 recourse is generated for yet another
random subset of individuals in the non-target class. This process is repeated for

6To keep notation simple, we have also restricted ourselves to binary classification here, but
AlgorithmicRecourseDynamics. j1 can also be used for multi-class problems.
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a number of time periods T'. To get a clean read on endogenous dynamics we keep
the total population of samples closed: we allow existing samples to move from
factual to counterfactual states but do not allow any entirely new samples to enter
the population. The experimental setup is summarized in Algorithm 3.1.

Algorithm 3.1 Simulation Experiment.

1: procedure EXPERIMENT (M, D, G)
2 E+0 > Initialize evaluation E.
3 t<0
4 while ¢t < T do
5: batch C D, > Sample from 2, (assignment).
6 batch < G(batch) > Generate counterfactuals.
7 M + M(D) > Retrain model.
8 E+evalM,D)UFE > Update evaluation.
9: t+—t+1 > Increment t.
10: end while

11: return £, M, D
12: end procedure

Note that the operation in line 4 is an assignment, rather than a copy operation, so
any updates to ‘batch’ will also affect 2. The function eval(M, D) loosely denotes
the computation of various evaluation metrics introduced below. In practice, these
metrics can also be computed at regular intervals as opposed to every round.

Along with any other fixed parameters affecting the counterfactual search, the para-
meters T' and B are assumed as given in Algorithm 3.1. Still, it is worth noting that
the higher these values, the more factual instances undergo recourse throughout the
entire experiment. Of course, this is likely to lead to more pronounced domain and
model shifts by time T. In our experiments, we choose the values such that the
majority of the negative instances from the initial dataset receive recourse. As we
compute evaluation metrics at regular intervals throughout the procedure, we can
also verify the impact of recourse when it is implemented for a smaller number of
individuals.

Algorithm 3.1 summarizes the proposed simulation experiment for a given dataset D,
model M and generator G, but naturally, we are interested in comparing simulation
outcomes for different sources of data, models and generators. The framework we
have built facilitates this, making use of multithreading in order to speed up compu-
tations. Holding the initial model and dataset constant, the experiments are run for
all generators, since our primary concern is to benchmark different recourse meth-
ods. To ensure that each generator is faced with the same initial conditions in each
round ¢, the candidate batch of individuals from the non-target class is randomly
drawn from the intersection of all non-target class individuals across all experiments

{Experiment(M, D, G)};,le where J is the total number of generators.
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3.4.2. EVALUATION METRICS

We formulate two desiderata for the set of metrics used to measure domain and
model shifts induced by recourse. First, the metrics should be applicable regard-
less of the dataset or classification technique so that they allow for the meaningful
comparison of the generators in various scenarios. As knowledge of the underly-
ing probability distribution is rarely available, the metrics should be empirical and
non-parametric. This further ensures that we can also measure large datasets by
sampling from the available data. Moreover, while our study was conducted in a
two-class classification setting, our choice of metrics should remain applicable in
future research on multi-class recourse problems. Second, the set of metrics should
allow capturing various aspects of the previously mentioned magnitude, path, and
pace of changes while remaining as small as possible.

3.4.2.1. DOMAIN SHIFTS

To quantify the magnitude of domain shifts we rely on an unbiased estimate of the
squared population Maximum Mean Discrepancy (MMD) given as:

, ~/ 1 m m
MMD(X',X') = m;;k(mi,%)
1 n n
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where X = {z,,..,2,,}, X = {#,,...%,} represent independent and identically
distributed samples drawn from probability distributions X and x respectively
(Gretton et al. 2012). MMD is a measure of the distance between the kernel
mean embeddings of X' and Xina Reproducing Kernel Hilbert Space, # (Berlinet
and Thomas-Agnan 2011). An important consideration is the choice of the kernel
function k(-,-). In our implementation, we make use of a Gaussian kernel with a
constant length-scale parameter of 0.5. As the Gaussian kernel captures all moments
of distributions X and X', we have that MMD(X,X) = 0 if and only if X = X.
Conversely, larger values MM D(X, X ) > 0 indicate that it is more likely that X
and X are different distributions. In our context, large values, therefore, indicate
that a domain shift indeed seems to have occurred.

To assess the statistical significance of the observed shifts under the null hypothesis
that samples X and X were drawn from the same probability distribution, we follow
Arcones and Gine (1992). To that end, we combine the two samples and generate
a large number of permutations of X + X. Then, we split the permuted data into
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two new samples X’ and X’ having the same size as the original samples. Under
the null hypothesis, we should have that MM D(X’, X”) be approximately equal to
MMD(X, X ). The corresponding p-value can then be calculated by counting how
often these two quantities are not equal.

We calculate the MMD for both classes individually based on the ground truth labels,
i.e. the labels that samples were assigned in time ¢ = 0. Throughout our experiments,
we generally do not expect the distribution of the negative class to change over time
— application of recourse reduces the size of this class, but since individuals are
sampled uniformly the distribution should remain unaffected. Conversely, unless a
recourse generator can perfectly replicate the original probability distribution, we
expect the MMD of the positive class to increase. Thus, when discussing MMD, we
generally mean the shift in the distribution of the positive class.

3.4.2.2. MODEL SHIFTS

As our baseline for quantifying model shifts, we measure perturbations to the model
parameters at each point in time ¢ following Upadhyay, Joshi, and Lakkaraju (2021).
We define A = ||0,,, — 6,||?, that is the euclidean distance between the vectors of
parameters before and after retraining the model M. We shall refer to this baseline
metric simply as Perturbations.

Furthermore, we extend the metric in Equation 5.8 to quantify model shifts. Spe-
cifically, we introduce Predicted Probability MMD (PP MMD): instead of applying
Equation 5.8 to features directly, we apply it to the predicted probabilities assigned
to a set of samples by the model M. If the model shifts, the probabilities assigned to
each sample will change; again, this metric will equal 0 only if the two classifiers are
the same. We compute PP MMD in two ways: firstly, we compute it over samples
drawn uniformly from the dataset, and, secondly, we compute it over points span-
ning a mesh grid over a subspace of the entire feature space. For the latter approach,
we bound the subspace by the extrema of each feature. While this approach is the-
oretically more robust, unfortunately, it suffers from the curse of dimensionality,
since it becomes increasingly difficult to select enough points to overcome noise as
the dimension D grows.

As an alternative to PP MMD, we use a pseudo-distance for the Disagreement
Coefficient (Disagreement). This metric was introduced in Hanneke (2007) and
estimates p(M(x) # M’(x)), that is the probability that two classifiers disagree
on the predicted outcome for a randomly chosen sample. Thus, it is not relevant
whether the classification is correct according to the ground truth, but only whether
the sample lies on the same side of the two respective decision boundaries. In
our context, this metric quantifies the overlap between the initial model (trained
before the application of AR) and the updated model. A Disagreement Coefficient
unequal to zero is indicative of a model shift. The opposite is not true: even if
the Disagreement Coefficient is equal to zero, a model shift may still have occurred.
This is one reason why PP MMD is our preferred metric.
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We further introduce Decisiveness as a metric that quantifies the likelihood that a
model assigns a high probability to its classification of any given sample. We define
the metric simply as + ZZO(O'(M(.’E)) — 0.5)2 where M (x) are predicted logits
from a binary classifier and ¢ denotes the sigmoid function. This metric provides
an unbiased estimate of the binary classifier’s tendency to produce high-confidence
predictions in either one of the two classes. Although the exact values for this
metric are not important for our study, they can be used to detect model shifts.
If decisiveness changes over time, then this is indicative of the decision boundary
moving towards either one of the two classes. A potential caveat of this metric in
the context of our experiments is that it will to some degree get inflated simply
through retraining the model.

Finally, we also take a look at the out-of-sample Performance of our models. To this
end, we compute their F-score on a test sample that we leave untouched throughout
the experiment.

3.5. EXPERIMENT SETUP

This section presents the exact ingredients and parameter choices describing the
simulation experiments we ran to produce the findings presented in the next section
(Section 3.6). For convenience, we use Algorithm 3.1 as a template to guide us
through this section. A few high-level details upfront: each experiment is run for a
total of T' = 50 rounds, where in each round we provide recourse to five per cent of all
individuals in the non-target class, so B, = 0.05*NtD . All classifiers and generative
models are retrained for 10 epochs in each round ¢ of the experiment. Rather than
retraining models from scratch, we initialize all parameters at their previous levels
(t — 1) and backpropagate for 10 epochs using the new training data as inputs into
the existing model. Evaluation metrics are computed and stored every 10 rounds.

To account for noise, each individual experiment is repeated five times”.

3.5.1. M —CLASSIFIERS AND GENERATIVE MODELS

For each dataset and generator, we look at three different types of classifiers, all
of them built and trained using Flux.jl (Michael Innes et al. 2018): firstly, a
simple linear classifier—Logistic Regression—implemented as a single linear layer
with sigmoid activation; secondly, a multilayer perceptron (MLP); and finally, a
Deep Ensemble composed of five MLPs following Lakshminarayanan, Pritzel, and
Blundell (2017) that serves as our only probabilistic classifier. We have chosen to
work with deep ensembles both for their simplicity and effectiveness at modelling
predictive uncertainty. They are also the model of choice in Schut et al. (2021).

7In the current implementation, we use the same train-test split each time to only account for
stochasticity associated with randomly selecting individuals for recourse. An interesting altern-
ative may be to also perform data splitting each time, thereby adding a layer of randomness.
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The network architectures are kept simple (top half of Table 3.1), since we are only
marginally concerned with achieving good initial classifier performance.

Table 3.1. Neural network architectures and training parameters.

Data Hidden Dim. Latent Dim. Hidden Layers Batch Dropout Epochs
MLP

Synthetic 32 - 1 - - 100

Real-World 64 - 2 500 0.1 100
VAE

Synthetic 32 2 1 - - 100

Real-World 32 8 1 - - 250

The Latent Space generator relies on a separate generative model. Following the
authors of both REVISE and CLUE we use Variational Autoencoders (VAE) for this
purpose. As with the classifiers, we deliberately choose to work with fairly simple ar-
chitectures (bottom half of Table 3.1). More expressive generative models generally
also lead to more meaningful counterfactuals produced by Latent Space generators.
But in our view, this should simply be considered as a vulnerability of counterfac-
tual generators that rely on surrogate models to learn realistic representations of
the underlying data.

3.5.2. D—bpATA

We have chosen to work with both synthetic and real-world datasets. Using synthetic
data allows us to impose distributional properties that may affect the resulting
recourse dynamics. Following Upadhyay, Joshi, and Lakkaraju (2021), we generate
synthetic data in R? to also allow for a visual interpretation of the results. Real-
world data is used in order to assess if endogenous dynamics also occur in higher-
dimensional settings.

3.5.2.1. SYNTHETIC DATA

We use four synthetic binary classification datasets consisting of 1000 samples each:
Overlapping, Linearly Separable, Circles and Moons (Figure 3.2).

Ex-ante we expect to see that by construction, Wachter will create a new cluster of
counterfactual instances in the proximity of the initial decision boundary as we saw
in Figure 3.1. Thus, the choice of a black-box model may have an impact on the
counterfactual paths. For generators that use latent space search (REVISE (Joshi et
al. 2019), CLUE (Antoran et al. 2020)) or rely on (and have access to) probabilistic
models (CLUE (Antorén et al. 2020), Greedy (Schut et al. 2021)) we expect that
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Figure 3.2. Synthetic classification datasets used in our experiments. Samples from
the negative class (y = 0) are marked in blue while samples of the
positive class (y = 1) are marked in orange.

counterfactuals will end up in regions of the target domain that are densely popu-
lated by training samples. Of course, this expectation hinges on how effective said
probabilistic models are at capturing predictive uncertainty. Finally, we expect to
see the counterfactuals generated by DiCE to be diversely spread around the feature
space inside the target class®. In summary, we expect that the endogenous shifts in-
duced by Wachter outsize those of all other generators since Wachter is not explicitly
concerned with generating what we have defined as meaningful counterfactuals.

3.5.3. REAL-WORLD DATA

We use three different real-world datasets from the Finance and Economics domain,
all of which are tabular and can be used for binary classification. Firstly, we use
the Give Me Some Credit dataset which was open-sourced on Kaggle for the task
to predict whether a borrower is likely to experience financial difficulties in the next
two years (Kaggle 2011), originally consisting of 250,000 instances with 11 numerical
attributes. Secondly, we use the UCI defaultCredit dataset (Yeh and Lien 2009), a
benchmark dataset that can be used to train binary classifiers to predict the binary
outcome variable of whether credit card clients default on their payment. In its
raw form, it consists of 23 explanatory variables: 4 categorical features relating to
demographic attributes and 19 continuous features largely relating to individuals’
payment histories and amount of credit outstanding. Both datasets have been used
in the literature on AR before (see for example Pawelczyk et al. (2021), Joshi et
al. (2019) and Ustun, Spangher, and Liu (2019)), presumably because they consti-
tute real-world classification tasks involving individuals that compete for access to
credit.

As a third dataset, we include the California Housing dataset derived from the 1990
U.S. census and sourced through scikit-learn (Pace and Barry 1997). It consists of 8
continuous features that can be used to predict the median house price for California

8As we mentioned earlier, the diversity constraint used by DiCE is only effective when at least
two counterfactuals are being generated. We have therefore decided to always generate 5 coun-
terfactuals for each generator and randomly pick one of them.
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districts. The continuous outcome variable is binarized as § = [,. ;edian(y) indicating
whether the median house price of a given district is above the median of all districts.
While we have not seen this dataset used in the previous literature on AR, others
have used the Boston Housing dataset in a similar fashion (Schut et al. 2021). We
initially also conducted experiments on that dataset, but eventually discarded it due
to surrounding ethical concerns (Carlisle 2019).

Since the simulations involve generating counterfactuals for a significant proportion
of the entire sample of individuals, we have randomly undersampled each dataset to
yield balanced subsamples consisting of 5,000 individuals each. We have also stand-
ardized all continuous explanatory features since our chosen classifiers are sensitive
to scale.

3.5.4. (—GENERATORS

All generators introduced earlier are included in the experiments: Wachter (Wachter,
Mittelstadt, and Russell 2017), REVISE (Joshi et al. 2019), CLUE (Antoran et al.
2020), DiCE (Mothilal, Sharma, and Tan 2020) and Greedy (Schut et al. 2021).
In addition, we introduce two new generators in Section Section 3.7 that directly
address the issue of endogenous domain and model shifts. We also test to what
extent it may be beneficial to combine ideas underlying the various generators.

3.6. EXPERIMENTS

Below, we first present our main experimental findings regarding these questions. We
conclude this section with a brief recap providing answers to all of these questions.

3.6.1. ENDOGENOUS MACRODYNAMICS

We start this section off with the key high-level observations. Across all datasets
(synthetic and real), classifiers and counterfactual generators we observe either most
or all of the following dynamics at varying degrees:

o Statistically significant domain and model shifts as measured by MMD.

« A deterioration in out-of-sample model performance as measured by the F-
Score evaluated on a test sample. In many cases this drop in performance is
substantial.

o Significant perturbations to the model parameters as well as an increase in the
model’s decisiveness.

« Disagreement between the original and retrained model, in some cases large.

There is also some clear heterogeneity across the results:
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e The observed dynamics are generally of the highest magnitude for the linear
classifier. Differences in results for the MLP and Deep Ensemble are mostly
negligible.

o The reduction in model performance appears to be most severe when classes
are not perfectly separable or the initial model performance was weak, to begin
with.

o Except for the Greedy generator, all other generators generally perform some-
what better overall than the baseline (Wachter) as expected.

Focusing first on synthetic data, Figure 3.3 presents our findings for the dataset
with overlapping classes. It shows the resulting values for some of our evaluation
metrics at the end of the experiment, after all T = 50 rounds, along with error bars
indicating the variation across folds.

The top row shows the estimated domain shifts. While it is difficult to interpret
the exact magnitude of MMD), we can see that the values are different from zero
and there is essentially no variation across our five folds. For the domain shifts, the
Greedy generator induces the smallest shifts, possibly because it only ever affects
one feature per iteration. In general, we have observed the opposite®.

The second row shows the estimated model shifts, where here we have used the
grid approach explained earlier. As with the domain shifts, the observed values are
clearly different from zero and variation across folds is once again small. In this
case, the results for this particular dataset very much reflect the broader patterns
we have observed: Latent Space (LS) generators induce the smallest shifts, while
DiCE and Greedy are generally on par with generic search (Wachter)!©.

The same broad pattern also emerges in the third row: we observe the smallest
deterioration in model performance for LS generators with a reduction in the F-Score
of at most 2 percentage points. For DiCE and Wachter, the reduction in performance
is up to 5 percentage points for non-linear models and up to nearly 15 percentage
points for the linear classifier'’. Related to this, the third row indicates that the
retrained classifiers disagree with their initial counterparts on the classification of
up to nearly 20 per cent of the individuals!?. We also note that the final classifiers
are more decisive, although as we noted earlier this may to some extent just be a
byproduct of retraining the model throughout the experiment.

Figure 3.3 also indicates that the estimated effects are strongest for the simplest
linear classifier, a pattern that we have observed fairly consistently. Conversely,

9For the Linearly Separable data, Greedy induces much stronger shifts than other generators. For

the Moons dataset, this also holds for non-linear models.

10Tn the original article, we mistakenly stated that Greedy generally introduces the most substantial
shifts. What we should have stated instead is that the results for Greedy exert the highest levels
of volatility across datasets and metrics, where in some cases Greedy produces the worst results
out of all generators, while in other cases it induces the smalles shifts.

\We have provided some more detail here than in the original article.

12The original article incorrectly stated “nearly 25 percent”.
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there is virtually no difference in outcomes between the deep ensemble and the MLP.
It is possible that the deep ensembles simply fail to capture predictive uncertainty
well and hence counterfactual generators like Greedy, which explicitly addresses this
quantity, fail to work as expected.

The findings for the other synthetic datasets are broadly consistent with the obser-
vations above (see appendix). For the Moons data, the same broad patterns emerge,
although in this case, the Greedy generator induces comparably strong shifts in
some cases. For the Circles data, model shifts and performance deterioration are
quantitatively much smaller than what we can observe in Figure 3.3 and in many
cases insignificant. For the Linearly Separable data we also find substantial domain
and model shifts!3.

Finally, it is also worth noting that the observed dynamics and patterns are consist-
ent throughout the experiment. That is to say that we start observing shifts already
after just a few rounds and these tend to increase proportionately for the different
generators over the course of the experiment.

Turning to the real-world data we will go through the findings presented in Fig-
ure 3.4, where each column corresponds to one of the three data sets. The results
shown here are for the deep ensemble, which once again largely resemble those for
the MLP. Starting from the top row, we find domain shifts of varying magnitudes
that are in many cases statistically significant (see appendix for details). Latent
Space search induces shifts that are orders of magnitude higher than for the other
generators, which generally induce significant but small shifts.

Model shifts are shown in the middle row of Figure 3.4: the estimated PP MMD
is statistically significant across the board and in some cases much larger than in
others. We find no evidence that LS search helps to mitigate model shifts, as we
did before for the synthetic data. Since these real-world datasets are arguably more
complex than the synthetic data, the generative model can be expected to have a
harder time learning the data-generating process and hence this increased difficulty
appears to affect the performance of REVISE/CLUE.

The out-of-sample model performance also deteriorates across the board and sub-
stantially so: the largest average reduction in F-Scores of more than 10 percentage
points is observed for the Credit Default dataset. For this dataset we achieved the
lowest initial model performance, indicating once again that weaker classifiers may
be more exposed to endogenous dynamics. As with the synthetic data, the estim-
ates for logistic regression are qualitatively in line with the above, but quantitatively
even more pronounced.

To recap, we answer our research questions: firstly, endogenous dynamics do emerge
in our experiments (RQ 3.1) and we find them substantial enough to be considered
costly (RQ 3.2); secondly, the choice of the counterfactual generator matters, with
Latent Space search generally having a dampening effect (RQ 3.3). The observed

131n the original article we mistakenly stated that for the linearly separable data we observe “almost
no reduction in model performance”, which is only true for the non-linear models.
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Figure 3.3. Results for synthetic data with overlapping classes. The shown model
MMD (PP MMD) was computed over a mesh grid of 1,000 points. Error
bars indicate the standard deviation across folds.
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Figure 3.4. Results for deep ensemble using real-world datasets. The shown model

MMD (PP MMD) was computed over actual samples, rather than a
mesh grid. Error bars indicate the standard deviation across folds.
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dynamics, therefore, seem to be driven by a discrepancy between counterfactual
outcomes that minimize costs to individuals and outcomes that comply with the
data-generating process (RQ 3.4).

3.7. MITIGATION STRATEGIES AND EXPERIMENTS

Having established in the previous section that endogenous macrodynamics in AR
are substantial enough to warrant our attention, in this section we ask ourselves:

Research Question 3.5 (Mitigation Strategies). What are potential mitigation
strategies with respect to endogenous macrodynamics in AR?

We propose and test several simple mitigation strategies. All of them essentially
boil down to one simple principle: to avoid domain and model shifts, the generated
counterfactuals should comply as much as possible with the true data-generating
process. This principle is really at the core of Latent Space (LS) generators, and
hence it is not surprising that we have found these types of generators to perform
comparably well in the previous section. But as we have mentioned earlier, gen-
erators that rely on separate generative models carry an additional computational
burden and, perhaps more importantly, their performance hinges on the perform-
ance of said generative models. Fortunately, it turns out that we can use a number
of other, much simpler strategies.

3.7.1. MORE CONSERVATIVE DECISION THRESHOLDS

The most obvious and trivial mitigation strategy is to simply choose a higher decision
threshold . This threshold determines when a counterfactual should be considered
valid. Under v = 0.5, counterfactuals will end up near the decision boundary by
construction. Since this is the region of maximal aleatoric uncertainty, the classifier
is bound to be thrown off. By setting a more conservative threshold, we can avoid
this issue to some extent. A drawback of this approach is that a classifier with
high decisiveness may classify samples with high confidence even far away from the
training data.

3.7.2. CLASSIFIER PRESERVING ROAR (CLAPROAR)

Another strategy draws inspiration from ROAR (Upadhyay, Joshi, and Lakkaraju
2021): to preserve the classifier, we propose to explicitly penalize the loss it in-
curs when evaluated on the counterfactual =’ at given parameter values. Recall
that extcost(-) denotes what we had defined as the external cost in Equation 3.4.
Formally, we let

exteost(f(s)) = UM (f(s")),y) (3.6)



3.7. MITIGATION STRATEGIES AND EXPERIMENTS 63

for each counterfactual k where [ denotes the loss function used to train M. This ap-
proach, which we refer to as ClaPROAR, is based on the intuition that (endogenous)
model shifts will be triggered by counterfactuals that increase classifier loss. It is
closely linked to the idea of choosing a higher decision threshold, but is likely better
at avoiding the potential pitfalls associated with highly decisive classifiers. It also
makes the private vs. external cost trade-off more explicit and hence manageable.

3.7.3. GRAVITATIONAL COUNTERFACTUAL EXPLANATIONS

Yet another strategy extends Wachter as follows: instead of only penalizing the
distance of the individuals’ counterfactual to its factual, we propose penalizing its
distance to some sensible point in the target domain, for example, the subsample
average £* = mean(z), € Dy:

extecost(f(s")) = dist(f(s"),z") (3.7

Once again we can put this in the context of Equation 3.4: the former penalty
can be thought of here as the private cost incurred by the individual, while the
latter reflects the external cost incurred by other individuals. Higher choices of
Ay relative to Ay will lead counterfactuals to gravitate towards the specified point
Z* in the target domain. In the remainder of this paper, we will therefore refer
to this approach as Gravitational generator, when we investigate its usefulness for

mitigating endogenous macrodynamics'®.

Figure 3.5 shows an illustrative example that demonstrates the differences in coun-
terfactual outcomes when using the various mitigation strategies compared to the
baseline approach, that is, Wachter with v = 0.5: choosing a higher decision
threshold pushes the counterfactual a little further into the target domain; this
effect is even stronger for ClaPROAR; finally, using the Gravitational generator the
counterfactual ends up all the way inside the target domain in the neighborhood of
z*1%. Linking these ideas back to Example Example 3.2, the mitigation strategies
help ensure that the recommended recourse actions are substantial enough to truly
lead to an increase in the probability that the admitted student eventually gradu-
ates.

Our findings indicate that all three mitigation strategies are at least at par with LS
generators with respect to their effectiveness at mitigating domain and model shifts.
Figure 3.6 presents a subset of the evaluation metrics for our synthetic data with
overlapping classes. The top row in Figure 3.6 indicates that while domain shifts are
of roughly the same magnitude for both Wachter and LS generators, our proposed
strategies effectively mitigate these shifts. ClaPROAR appears to be particularly

14 Note that despite the naming conventions, our goal here is not to provide yet more counterfactual
generators. Rather than looking at them as isolated entities, we believe and demonstrate that
different approaches can be effectively combined.

151n order for the Gravitational generator and ClaPROAR to work as expected, one needs to
ensure that counterfactual search continues, independent of the threshold probability ~.
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Gravitational . Generic (y=0. /=0.9) ClaPROAR

oo

Figure 3.5. Illustrative example demonstrating the properties of the various mitiga-
tion strategies. Samples from the negative class (y = 0) are marked in
orange while samples of the positive class (y = 1) are marked in blue.

effective, which is positively surprising since it is designed to explicitly address model
shifts, not domain shifts. As evident from the middle row in Figure 3.6 model shifts
can also be reduced: for the deep ensemble LS search yields results that are at par
with the mitigation strategies, while for both the simple MLP and logistic regression
our simple strategies are more effective. The same overall pattern can be observed
for out-of-sample model performance. Concerning the other synthetic datasets, for
the Moons dataset, the emerging patterns are largely the same, but the estimated
model shifts are insignificant as noted earlier; the same holds for the Circles dataset,
but there is no significant reduction in model performance for our neural networks;
in the case of linearly separable data, we find the Gravitational generator to be most
effective at mitigating shifts.

An interesting finding is also that the proposed strategies have a complementary
effect when used in combination with LS generators. In experiments we conducted
on the synthetic data, the benefits of LS generators were exacerbated further when
using a more conservative threshold or combining it with the penalties underlying
Gravitational and ClaPROAR. In Figure 3.7 the conventional LS generator with
v = 0.5 serves as our baseline. Evidently, being more conservative or using one of
our proposed penalties decreases the estimated domain and model shifts, in some
cases beyond significance.

Finally, Figure 3.8 shows the results for our real-world data. We note that for
both the California Housing and GMSC data, ClaPROAR does have an attenuating
effect on model performance deterioration'®. Overall, the results are less significant,
possibly because a somewhat smaller share of individuals from the non-target group

received recourse than in the synthetic case'”.

16Estimated domain shifts (not shown) were largely insubstantial, as in Figure 3.4 in the previous
section.

171n earlier experiments we moved a larger share of individuals and the results more clearly favoured
our mitigation strategies.


https://github.com/pat-alt/endogenous-macrodynamics-in-algorithmic-recourse/releases/tag/dec-2022

3.7. MITIGATION STRATEGIES AND EXPERIMENTS 65

Deep Ensemble Linear MLP
0.12-
0.09 - E
o
0.06 - ,§
z
0.03 - B
0.00 -
0.04 -
d <
o 0.03 <
g o
g 0.02 - ’é‘
0.00 - [ J o O
0.00 - [ J o
T" -
(0]
-0.05- l 3
3
Q
-0.10- 3

& claproAR  [# Generic (y=0.9) #  Latent

Generator:
. Generic (y=0.5) . Gravitational

Figure 3.6. The differences in counterfactual outcomes when using the various mit-
igation strategies compared to the baseline approach, that is Wachter
with v = 0.5. Results for synthetic data with overlapping classes. The
shown model MMD (PP MMD) was computed over a mesh grid of points.
Error bars indicate the standard deviation across folds.
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Figure 3.7. Combining various mitigation strategies with LS search. Results for
synthetic data with overlapping classes. The shown model MMD (PP
MMD) was computed over a mesh grid of points. Error bars indicate
the standard deviation across folds.
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Figure 3.8. The differences in counterfactual outcomes when using the various mit-
igation strategies compared to the baseline approach, that is Wachter
with v = 0.5. Results for the MLP using real-world datasets. The shown
model MMD (PP MMD) was computed over actual samples, rather than
a mesh grid. Error bars indicate the standard deviation across folds.
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3.8. DISCUSSION

Our results in Section Section 3.6 indicate that state-of-the-art approaches to Al-
gorithmic Recourse induce substantial domain and model shift if implemented at
scale in practice. These induced shifts can and should be considered as an (expected)
external cost of individual recourse. While they do not affect the individual directly
as long as we look at the individual in isolation, they can be seen to affect the
broader group of stakeholders in automated data-driven decision-making. We have
seen, for example, that out-of-sample model performance generally deteriorates in
our simulation experiments. In practice, this can be seen as a cost to model owners,
that is the group of stakeholders using the model as a decision-making tool. As
we have set out in Example Example 3.2 of our introduction, these model owners
may be unwilling to carry that cost, and hence can be expected to stop offering
recourse to individuals altogether. This in turn is costly to those individuals that
would otherwise derive utility from being offered recourse.

So, where does this leave us? We would argue that the expected external costs of
individual recourse should be shared by all stakeholders. The most straightforward
way to achieve this is to introduce a penalty for external costs in the counterfactual
search objective function, as we have set out in Equation 3.4. This will on average
lead to more costly counterfactual outcomes, but may help to avoid extreme scen-
arios, in which minimal-cost recourse is reserved to a tiny minority of individuals.
We have shown various types of shift-mitigating strategies that can be used to this
end. Since all of these strategies can be seen simply as a specific adaption of Equa-
tion 3.4, they can be applied to any of the various counterfactual generators studied
here.

3.9. LIMITATIONS AND FUTURE WORK

While we believe that this work constitutes a valuable starting point for addressing
existing issues in Algorithmic Recourse from a fresh perspective, we are aware of
several of its limitations. In the following, we highlight some of these and point to
avenues for future research.

3.9.1. PRIVATE VS. EXTERNAL COSTS

Perhaps the most crucial shortcoming of our work is that we merely point out that
there exists a trade-off between private costs to the individual and external costs
to the collective of stakeholders. We fall short of providing any definitive answers
as to how that trade-off may be resolved in practice. The mitigation strategies we
have proposed here provide a good starting point, but they are ad-hoc extensions of
the existing AR framework. An interesting idea to explore in future work could be
the potential for Pareto optimal Algorithmic Recourse, that is, a collective recourse
outcome in which no single individual can be made better off, without making at
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least one other individual worse off. This type of work would be interdisciplinary
and could help to formalize some of the concepts presented in this work.

3.9.2. EXPERIMENTAL SETUP

The experimental setup proposed here is designed to mimic a real-world recourse
process in a simple fashion. In practice, models are updated regularly (Upadhyay,
Joshi, and Lakkaraju 2021). We also find it plausible to assume that the implementa-
tion of recourse happens periodically for different individuals, rather than all at once
at time t = 0. That being said, our experimental design is a vast over-simplification
of potential real-world scenarios. In practice, any endogenous shifts that may occur
can be expected to be entangled with exogenous shifts of the nature investigated in
Upadhyay, Joshi, and Lakkaraju (2021). We also make implicit assumptions about
the utility functions of the involved agents that may well be too simple: individu-
als seeking recourse are assumed to always implement the proposed Counterfactual
Explanations; conversely, the agent in charge of the model M is assumed to always
treat individuals that have implemented valid recourse as if they were truly now in
the target class.

3.9.3. CAUSAL MODELLING

In this work, we have focused on popular counterfactual generators that do not in-
corporate any causal knowledge. The generated perturbations therefore may involve
changes to variables that affect the outcome predicted by the black-box model, but
not the true outcome. The implementation of such changes is typically described
as gaming (J. Miller, Milli, and Hardt 2020), although they need not be driven
by adversarial intentions: in Example Example 3.2, student applicants may duti-
fully focus on acquiring credentials that help them to be admitted to university,
but ultimately not to improve their chances of success at completing their degree
(Barocas, Hardt, and Narayanan 2022). Preventing such actions may help to avoid
the dynamics we have pointed to in this work. Future work would likely benefit
from including recent approaches to AR that incorporate causal knowledge such as
Karimi, Schélkopf, and Valera (2021).

3.9.4. CLASSIFIERS

For reasons stated earlier, we have limited our analysis to differentiable linear and
non-linear classifiers, in particular logistic regression and deep neural networks.
While these sorts of classifiers have also typically been analyzed in the existing
literature on Counterfactual Explanations and Algorithmic Recourse, they repres-
ent only a subset of popular machine learning models employed in practice. Despite
the success and popularity of deep learning in the context of high-dimensional data
such as image, audio and video, empirical evidence suggests that other models such
as boosted decision trees may have an edge when it comes to lower-dimensional
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tabular datasets, such as the ones considered here (Borisov et al. 2022; Grinsztajn,
Oyallon, and Varoquaux 2022).

3.95. pATA

Largely in line with the existing literature on Algorithmic Recourse, we have lim-
ited our analysis of real-world data to three commonly used benchmark datasets
that involve binary prediction tasks. Future work may benefit from including novel
datasets or extending the analysis to multi-class or regression problems, the latter
arguably representing the most common objective in Finance and Economics.

3.10. CONCLUDING REMARKS

This work has revisited and extended some of the most general and defining con-
cepts underlying the literature on Counterfactual Explanations and, in particular,
Algorithmic Recourse. We demonstrate that long-held beliefs as to what defines
optimality in AR, may not always be suitable. Specifically, we run experiments
that simulate the application of recourse in practice using various state-of-the-art
counterfactual generators and find that all of them induce substantial domain and
model shifts. We argue that these shifts should be considered as an expected ex-
ternal cost of individual recourse and call for a paradigm shift from individual to
collective recourse in these types of situations. By proposing an adapted counter-
factual search objective that incorporates this cost, we make that paradigm shift
explicit. We show that this modified objective lends itself to mitigation strategies
that can be used to effectively decrease the magnitude of induced domain and model
shifts. Through our work, we hope to inspire future research on this important
topic. To this end we have open-sourced all of our code along with a Julia pack-
age: AlgorithmicRecourseDynamics.jl. Future researchers should find it easy to
replicate, modify and extend the simulation experiments presented here and apply
them to their own custom counterfactual generators.
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FAITHFUL MODEL
EXPLANATIONS THROUGH
ENERGY-CONSTRAINED
CONFORMAL
COUNTERFACTUALS

Counterfactual explanations offer an intuitive and straightforward way to explain
black-box models and offer algorithmic recourse to individuals. To address the need
for plausible explanations, existing work has primarily relied on surrogate models
to learn how the input data is distributed. This effectively reallocates the task of
learning realistic explanations for the data from the model itself to the surrogate.
Consequently, the generated explanations may seem plausible to humans but need
not necessarily describe the behavior of the black-box model faithfully. We formal-
ize this notion of faithfulness through the introduction of a tailored evaluation met-
ric and propose a novel algorithmic framework for generating Energy-Constrained
Conformal Counterfactuals that are only as plausible as the model permits. Through
extensive empirical studies, we demonstrate that ECCCo reconciles the need for
faithfulness and plausibility. In particular, we show that for models with gradient
access, it is possible to achieve state-of-the-art performance without the need for
surrogate models. To do so, our framework relies solely on properties defining the
black-box model itself by leveraging recent advances in energy-based modelling and
conformal prediction. To our knowledge, this is the first venture in this direction for
generating faithful counterfactual explanations. Thus, we anticipate that ECCCo
can serve as a baseline for future research. We believe that our work opens avenues
for researchers and practitioners seeking tools to better distinguish trustworthy from
unreliable models.

71
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This chapter was published in Proceedings of the AAAI Conference on Artifi-
cial Intelligence by Patrick Altmeyer, Mojtaba Farmanbar, Arie van Deursen
and Cynthia C. S. Liem (2024a). See Chapter 1.8 for additional publication
details.

41. INTRODUCTION

Counterfactual explanations provide a powerful, flexible and intuitive way to not
only explain black-box models but also offer the possibility of algorithmic recourse
to affected individuals. Instead of opening the black box, counterfactual explana-
tions work under the premise of strategically perturbing model inputs to understand
model behavior (Wachter, Mittelstadt, and Russell 2017). Intuitively speaking, we
generate explanations in this context by asking what-if questions of the following
nature: ‘Our credit risk model currently predicts that this individual is not credit-
worthy. What if they reduced their monthly expenditures by 10%7’

This is typically implemented by defining a target outcome y™ € Y for some indi-
vidual x € X' = RP described by D attributes, for which the model M, : X + Y ini-
tially predicts a different outcome: My(x) # y*. Counterfactuals are then searched
by minimizing a loss function that compares the predicted model output to the
target outcome: yloss(My(x),y1). Since counterfactual explanations work directly
with the black-box model, valid counterfactuals always have full local fidelity by con-
struction where fidelity is defined as the degree to which explanations approximate
the predictions of a black-box model (Molnar 2022).

In situations where full fidelity is a requirement, counterfactual explanations offer
a more appropriate solution to Explainable Artificial Intelligence (XAI) than other
popular approaches like LIME (Ribeiro, Singh, and Guestrin 2016) and SHAP (Lun-
dberg and Lee 2017), which involve local surrogate models. But even full fidelity is
not a sufficient condition for ensuring that an explanation faithfully describes the
behavior of a model. That is because multiple distinct explanations can lead to the
same model prediction, especially when dealing with heavily parameterized mod-
els like deep neural networks, which are underspecified by the data (Wilson 2020).
In the context of counterfactuals, the idea that no two explanations are the same
arises almost naturally. A key focus in the literature has therefore been to identify
those explanations that are most appropriate based on a myriad of desiderata such
as closeness (Wachter, Mittelstadt, and Russell 2017), sparsity (Schut et al. 2021),
actionability (Ustun, Spangher, and Liu 2019) and plausibility (Joshi et al. 2019).

In this work, we draw closer attention to modelling faithfulness rather than fidelity
as a desideratum for counterfactuals. We define faithfulness as the degree to which
counterfactuals are consistent with what the model has learned about the data. Our
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key contributions are as follows: first, we show that fidelity is an insufficient evalu-
ation metric for counterfactuals (Section 4.3) and propose a definition of faithfulness
that gives rise to more suitable metrics (Section 4.4). Next, we introduce a ECCCo:
a novel algorithmic approach aimed at generating energy-constrained conformal
counterfactuals that faithfully explain model behavior in Section 4.5. Finally, we
provide extensive empirical evidence demonstrating that ECCCo faithfully explains
model behavior and attains plausibility only when appropriate (Section 4.6).

To our knowledge, this is the first venture in this direction for generating faithful
counterfactuals. Thus, we anticipate that ECCCo can serve as a baseline for future
research. We believe that our work opens avenues for researchers and practitioners
seeking tools to better distinguish trustworthy from unreliable models.

4.2. BACKGROUND

While counterfactual explanations (CE) can also be generated for arbitrary regres-
sion models (Spooner et al. 2021), existing work has primarily focused on classifica-
tion problems. Let ¥ = (0,1)% denote the one-hot-encoded output domain with K
classes. Then most counterfactual generators rely on gradient descent to optimize
different flavors of the following counterfactual search objective:

i {yloss(My(f(Z")),y") + Acost(f(Z"))} (4.1)

Z'e

Here yloss(-) denotes the primary loss function, f(-) is a function that maps from the
counterfactual state space to the feature space and cost(-) is either a single penalty
or a collection of penalties that are used to impose constraints through regulariza-
tion. Equation 5.1 restates the baseline approach to gradient-based counterfactual
search proposed by Wachter, Mittelstadt, and Russell (2017) in general form as
introduced Chapter 2. To explicitly account for the multiplicity of explanations,
Z’ = {z;} denotes an L-dimensional array of counterfactual states.

The baseline approach, which we will simply refer to as Wachter, searches a single
counterfactual directly in the feature space and penalizes its distance to the original
factual. In this case, f(-) is simply the identity function and Z corresponds to the
feature space itself. Many derivative works of Wachter, Mittelstadt, and Russell
(2017) have proposed new flavors of Equation 5.1, each of them designed to address
specific desiderata that counterfactuals ought to meet in order to properly serve
both AI practitioners and individuals affected by algorithmic decision-making sys-
tems. The list of desiderata includes but is not limited to the following: sparsity,
closeness (Wachter, Mittelstadt, and Russell 2017), actionability (Ustun, Spangher,
and Liu 2019), diversity (Mothilal, Sharma, and Tan 2020), plausibility (Joshi et
al. 2019; Poyiadzi et al. 2020; Schut et al. 2021), robustness (Upadhyay, Joshi,
and Lakkaraju 2021; Pawelczyk et al. 2023; Altmeyer, Angela, et al. 2023) and
causality (Karimi, Scholkopf, and Valera 2021). Different counterfactual generat-
ors addressing these needs have been extensively surveyed and evaluated in various
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studies (Verma et al. 2022; Karimi et al. 2021; Pawelczyk et al. 2021; Artelt et al.
2021; Guidotti 2022).

The notion of plausibility is central to all of the desiderata. For example, Artelt et
al. (2021) find that plausibility typically also leads to improved robustness. Sim-
ilarly, plausibility has also been connected to causality in the sense that plaus-
ible counterfactuals respect causal relationships (Mahajan, Tan, and Sharma 2020).
Consequently, the plausibility of counterfactuals has been among the primary con-
cerns for researchers. Achieving plausibility is equivalent to ensuring that the gener-
ated counterfactuals comply with the true and unobserved data-generating process
(DGP). We define plausibility formally in this work as follows:

Definition 4.1 (Plausible Counterfactuals). Let X|y* = p(x|y") denote the true con-
ditional distribution of samples in the target class y™. Then for x” to be considered
a plausible counterfactual, we need: x’ ~ X|y*.

To generate plausible counterfactuals, we first need to quantify the conditional dis-
tribution of samples in the target class (X'|y"). We can then ensure that we generate
counterfactuals that comply with that distribution.

One straightforward way to do this is to use surrogate models for the task. Joshi
et al. (2019), for example, suggest that instead of searching counterfactuals in the
feature space X', we can traverse a latent embedding Z (Equation 5.1) that implicitly
codifies the DGP. To learn the latent embedding, they propose using a generative
model such as a Variational Autoencoder (VAE). Provided the surrogate model is
well-specified, their proposed approach REVISE can yield plausible explanations.
Others have proposed similar approaches: Dombrowski, Gerken, and Kessel (2021)
traverse the base space of a normalizing flow to solve Equation 5.1; Poyiadzi et
al. (2020) use density estimators (p : X' + [0,1]) to constrain the counterfactuals
to dense regions in the feature space; finally, Karimi, Scholkopf, and Valera (2021)
assume knowledge about the causal graph that generates the data.

A competing approach towards plausibility that is also closely related to this work
instead relies on the black-box model itself. Schut et al. (2021) show that to meet the
plausibility objective we need not explicitly model the input distribution. Pointing
to the undesirable engineering overhead induced by surrogate models, they propose
to rely on the implicit minimization of predictive uncertainty instead. Their pro-
posed methodology, which we will refer to as Schut, solves Equation 5.1 by greedily
applying Jacobian-Based Saliency Map Attacks (JSMA) in the feature space with
cross-entropy loss and no penalty at all. The authors demonstrate theoretically and
empirically that their approach yields counterfactuals for which the model M, pre-
dicts the target label y™ with high confidence. Provided the model is well-specified,
these counterfactuals are plausible. This idea hinges on the assumption that the
black-box model provides well-calibrated predictive uncertainty estimates.
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4.3. WHY FIDELITY IS NOT ENOUGH: A MOTIVATIONAL
EXAMPLE

As discussed in the introduction, any valid counterfactual also has full fidelity by
construction: solutions to Equation 5.1 are considered valid as soon as the label
predicted by the model matches the target class. So while fidelity always applies,
counterfactuals that address the various desiderata introduced above can look vastly
different from each other.

To demonstrate this with an example, we have trained a simple image classifier M,
on the well-known MNIST dataset (LeCun et al. 1998): a Multi-Layer Perceptron
(MLP) with test set accuracy > 0.9. No measures have been taken to improve the
model’s adversarial robustness or its capacity for predictive uncertainty quantifica-
tion. The far left panel of Figure 4.1 shows a random sample drawn from the dataset.
The underlying classifier correctly predicts the label ‘nine’ for this image. For the
given factual image and model, we have used Wachter, Schut and REVISE to gen-
erate one counterfactual each in the target class ‘seven’. The perturbed images are
shown next to the factual image from left to right in Figure 4.1. Captions on top
of the images indicate the generator along with the predicted probability that the
image belongs to the target class. In all cases, that probability is very high, while
the counterfactuals look very different.

Wachter (p=0.9

Schut (p=0.92) REVISE (p=0.97)

Figure 4.1. Counterfactuals for turning a 9 (nine) into a 7 (seven): original image
(left), then the counterfactuals generated using Wachter, Schut and RE-
VISE.

Since Wachter is only concerned with closeness, the generated counterfactual is al-
most indistinguishable from the factual. Schut expects a well-calibrated model that
can generate predictive uncertainty estimates. Since this is not the case, the gener-
ated counterfactual looks like an adversarial example. Finally, the counterfactual
generated by REVISE looks much more plausible than the other two. But is it
also more faithful to the behavior of our MNIST classifier? That is much less clear
because the surrogate used by REVISE introduces friction: explanations no longer
depend exclusively on the black-box model itself.

So which of the counterfactuals most faithfully explains the behavior of our image
classifier? Fidelity cannot help us to make that judgement, because all of these
counterfactuals have full fidelity. Thus, fidelity is an insufficient evaluation metric
to assess the faithfulness of CE.
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4.4. FAITHFUL FIRST, PLAUSIBLE SECOND

Considering the limitations of fidelity as demonstrated in the previous section, ana-
logous to Definition 4.1, we introduce a new notion of faithfulness in the context of

CE:

Definition 4.2 (Faithful Counterfactuals). Let XplyT = py(x|y") denote the con-
ditional distribution of x in the target class y*, where 6 denotes the parameters

of model M,. Then for x’ to be considered a faithful counterfactual, we need:
X~ Lyly™.

In doing this, we merge in and nuance the concept of plausibility (Definition 4.1)
where the notion of ‘consistent with the data’ becomes ‘consistent with what the
model has learned about the data’.

4.41. QUANTIFYING THE MODEL'S GENERATIVE PROPERTY

To assess counterfactuals with respect to Definition 4.2, we need a way to quantify
the posterior conditional distribution py(x|y™). To this end, we draw on ideas from
energy-based modelling (EBM), a subdomain of machine learning that is concerned
with generative or hybrid modelling (Grathwohl et al. 2020; Du and Mordatch
2020). In particular, note that if we fix y to our target value y*, we can conditionally
draw from py(x|yt) by randomly initializing x, and then using Stochastic Gradient
Langevin Dynamics (SGLD) as follows,

2

€“
Xji1 & X — Ejé’g(xj|y+) +ery, j=1,0J (4.2)

where r; ~ N (0,1) is the stochastic term and the step-size €; is typically polynomi-
ally decayed (Welling and Teh 2011). The term &y(x;|y") denotes the model energy
conditioned on the target class label y* which we specify as the negative logit cor-
responding to yT. To allow for faster sampling, we follow the common practice of
choosing the step-size €; and the standard deviation of r; separately. While x; is
only guaranteed to distribute as p,(x|y*) if € = 0 and J — oo, the bias introduced

for a small finite e is negligible in practice (Murphy 2023).

Generating multiple samples using SGLD thus yields an empirical distribution ie,w
that approximates what the model has learned about the input data. While in the
context of EBM, this is usually done during training, we propose to repurpose this
approach during inference in order to evaluate the faithfulness of model explanations.
The appendix provides additional implementation details for any tasks related to
energy-based modelling’.

IThe supplementary appendix can be found here: https://arxiv.org/abs/2312.10648.
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4.4.2. QUANTIFYING THE MODEL'S PREDICTIVE UNCERTAINTY

Faithful counterfactuals can be expected to also be plausible if the learned condi-
tional distribution Xy|y* (Definition 4.2) is close to the true conditional distribution
Xyt (Definition 4.1). We can further improve the plausibility of counterfactuals
without the need for surrogate models that may interfere with faithfulness by min-
imizing predictive uncertainty (Schut et al. 2021). Unfortunately, this idea relies
on the assumption that the model itself provides predictive uncertainty estimates,
which may be too restrictive in practice.

To relax this assumption, we use conformal prediction (CP), an approach to predict-
ive uncertainty quantification that has recently gained popularity (Angelopoulos
and Bates 2022; Manokhin 2022). Crucially for our intended application, CP is
model-agnostic and can be applied during inference without placing any restrictions
on model training. It works under the premise of turning heuristic notions of un-
certainty into rigorous estimates by repeatedly sifting through the training data or
a dedicated calibration dataset. Calibration data is used to compute so-called non-
conformity scores: § = {s(x;,¥;)}icp_, Where s: (X, Y) = R is referred to as score
function (see appendix for details).

Conformal classifiers produce prediction sets for individual inputs that include all
output labels that can be reasonably attributed to the input. These sets are formed
as follows,

Colxis0) = {y : s(x;,y) < ¢} (4.3)

where ¢ denotes the (1 —a)-quantile of § and « is a predetermined error rate. These
sets tend to be larger for inputs that do not conform with the training data and are
characterized by high predictive uncertainty. To leverage this notion of predictive
uncertainty in the context of gradient-based counterfactual search, we use a smooth
set size penalty introduced by Stutz et al. (2022):

O(Cy(x; a)) = max (0, Z Coy(x;30) — /-@) (4.4)

yey

Here, x € {0,1} is a hyper-parameter and Cy ,(x;; @) can be interpreted as the prob-
ability of label y being included in the prediction set (see appendix for details). In
order to compute this penalty for any black-box model, we merely need to perform
a single calibration pass through a holdout set D_,;. Arguably, data is typically
abundant and in most applications, practitioners tend to hold out a test data set
anyway. Consequently, CP removes the restriction on the family of predictive mod-
els, at the small cost of reserving a subset of the available data for calibration. This
particular case of conformal prediction is referred to as split conformal prediction
(SCP) as it involves splitting the training data into a proper training dataset and a
calibration dataset.
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4.4.3. EVALUATING PLAUSIBILITY AND FAITHFULNESS

The parallels between our definitions of plausibility and faithfulness imply that we
can also use similar evaluation metrics in both cases. Since existing work has focused
heavily on plausibility, it offers a useful starting point. In particular, Guidotti
(2022) have proposed an implausibility metric that measures the distance of the
counterfactual from its nearest neighbor in the target class. As this distance is
reduced, counterfactuals get more plausible under the assumption that the nearest
neighbor itself is plausible in the sense of Definition 4.1. In this work, we use the
following adapted implausibility metric,

. , 1 o
1mpl(x ,Xy+) = m Z dlSt(X 7X) (45)
Yl xeX 4

where x” denotes the counterfactual and Xy+ is a subsample of the training data in
the target class y©. By averaging over multiple samples in this manner, we avoid the
risk that the nearest neighbor of x” itself is not plausible according to Definition 4.1
(e.g. an outlier).

Equation 4.5 gives rise to a similar evaluation metric for unfaithfulness. We swap
out the subsample of observed individuals in the target class for the set of samples
generated through SGLD (X, .. ):

EN 1
unfaith(x’, Xy o+ ) = =—— Z dist(x’, x) (4.6)
|X0,y+| '

xef(e,ﬁ

Our default choice for the dist(-) function in both cases is the Euclidean Norm.
Depending on the type of input data other choices may be more adequate (see
Section 4.6.1).

4.5. ENERGY-CONSTRAINED CONFORMAL
COUNTERFACTUALS

Given our proposed notion of faithfulness, we now describe ECCCo, our proposed
framework for generating Energy-Constrained Conformal Counterfactuals. It is
based on the premise that counterfactuals should first and foremost be faithful.
Plausibility, as a secondary concern, is then still attainable to the degree that the
black-box model itself has learned plausible explanations for the underlying data.

We begin by substituting the loss function in Equation 5.1,

Jnin {Lyy (f(2): My.y*) + Acost(£(Z'))} (4.7)
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where Ly (f(Z"); My,y*t) is a hybrid loss function used in joint-energy modelling
evaluated at a given counterfactual state for a given model and target outcome:

Lypm(f(Z7);) = Lag(f(Z'); ) + Lgen (f(Z7); ) (4.8)

The first term, Ly, is any standard classification loss function such as cross-entropy
loss. The second term, L is used to measure loss with respect to the generative
task?. In the context of joint-energy training, L., induces changes in model para-
meters 6 that decrease the energy of observed samples and increase the energy of
samples generated through SGLD (Du and Mordatch 2020).

gen’

The key observation in our context is that we can rely solely on decreasing the energy
of the counterfactual itself. This is sufficient to capture the generative property of
the underlying model since it is implicitly captured by its parameters 6. Importantly,
this means that we do not need to generate conditional samples through SGLD
during our counterfactual search at all (see appendix for details).

This observation leads to the following simple objective function for ECCCo:

Jnin {Lag(f(2'); Mp,y™) + Ay cost(£(Z'))
€ (4.9)
+ X E(F(ZNyT) + A3QCy(£(Z'); )}

The first penalty term involving A; induces closeness like in Wachter, Mittelstadt,
and Russell (2017). The second penalty term involving A, induces faithfulness by
constraining the energy of the generated counterfactual. The third and final pen-
alty term involving A; ensures that the generated counterfactual is associated with
low predictive uncertainty. To tune these hyperparameters we have relied on grid
search.

Concerning feature autoencoding (f : Z +— X'), ECCCo does not rely on latent space
search to achieve its primary objective of faithfulness. By default, we choose f(-)
to be the identity function as in Wachter. This is generally also enough to achieve
plausibility, provided the model has learned plausible explanations for the data. In
some cases, plausibility can be improved further by mapping counterfactuals to
a lower-dimensional latent space. In the following, we refer to this approach as
ECCCo+: that is, ECCCo plus dimensionality reduction.

Figure 5.1 illustrates how the different components in Equation 4.9 affect the coun-
terfactual search for a synthetic dataset. The underlying classifier is a Joint Energy
Model (JEM) that was trained to predict the output class (blue or orange) and
generate class-conditional samples (Grathwohl et al. 2020). We have used four dif-
ferent generator flavors to produce a counterfactual in the blue class for a sample
from the orange class: Wachter, which only uses the first penalty (A, = A3 = 0);

2In practice, regularization loss is typically also added. We follow this convention but have omitted
the term here for simplicity.
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Figure 4.2. Gradient fields and counterfactual paths for different generators. The
objective is to generate a counterfactual in the blue class for a sample
from the orange class. Bright yellow stars indicate conditional samples
generated through SGLD. The underlying classifier is a Joint Energy
Model.

ECCCo (no EBM), which does not constrain energy (A, = 0); ECCCo (no CP),
which involves no set size penalty (A3 = 0); and, finally, ECCCo, which involves all
penalties defined in Equation 4.9. Arrows indicate (negative) gradients with respect
to the objective function at different points in the feature space.

While Wachter generates a valid counterfactual, it ends up close to the original
starting point consistent with its objective. ECCCo (no EBM) avoids regions of
high predictive uncertainty near the decision boundary, but the outcome is still not
plausible. The counterfactual produced by ECCCo (no CP) is energy-constrained.
Since the JEM has learned the conditional input distribution reasonably well in
this case, the counterfactual is both faithful and plausible. Finally, the outcome for
ECCCo looks similar, but the additional smooth set size penalty leads to somewhat
faster convergence.

4.6. EMPIRICAL ANALYSIS

Our goal in this section is to shed light on the following research questions:

Research Question 4.1 (Faithfulness). To what extent are counterfactuals generated
by ECCCo more faithful than those produced by state-of-the-art generators?

Research Question 4.2 (Balancing Desiderata). Compared to state-of-the-art gener-
ators, how does ECCCo balance the two key objectives of faithfulness and plausib-
ility?

The second question is motivated by the intuition that faithfulness and plausibility
should coincide for models that have learned plausible explanations of the data.
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4.6.1. EXPERIMENTAL SETUP

To assess and benchmark the performance of our proposed generator against the
state of the art, we generate multiple counterfactuals for different models and data-
sets. In particular, we compare ECCCo and its variants to the following counterfac-
tual generators that were introduced above: firstly, Schut, which works under the
premise of minimizing predictive uncertainty; secondly, REVISE, which is state-of-
the-art (SOTA) with respect to plausibility; and, finally, Wachter, which serves as
our baseline. In the case of ECCCo+, we use principal component analysis (PCA)
for dimensionality reduction: the latent space Z is spanned by the first n, principal
components where we choose n, to be equal to the latent dimension of the VAE
used by REVISE.

For the predictive modelling tasks, we use multi-layer perceptrons (MLP), deep en-
sembles, joint energy models (JEM) and convolutional neural networks (LeNet-5
CNN (LeCun et al. 1998)). Both joint-energy modelling and ensembling have been
associated with improved generative properties and adversarial robustness (Grath-
wohl et al. 2020; Lakshminarayanan, Pritzel, and Blundell 2017), so we expect this
to be positively correlated with the plausibility of ECCCo. To account for stochasti-
city, we generate many counterfactuals for each target class, generator, model and
dataset over multiple runs.

We perform benchmarks on eight datasets from different domains. From the
credit and finance domain we include three tabular datasets: Give Me Some
Credit (GMSC) (Kaggle 2011), German Credit (Hoffman 1994) and California
Housing (Pace and Barry 1997). All of these are commonly used in the related
literature (Karimi et al. 2021; Altmeyer, Angela, et al. 2023; Pawelczyk et al.
2021). Following related literature (Schut et al. 2021; Dhurandhar et al. 2018)
we also include two image datasets: MNIST (LeCun et al. 1998) and Fashion
MNIST (Xiao, Rasul, and Vollgraf 2017).

Full details concerning model training as well as detailed descriptions and results
for all datasets can be found in the appendix. In the following, we will focus on
the most relevant results highlighted in Table 4.1 and Table 4.2. The tables show
sample averages along with standard deviations across multiple runs for our key
evaluation metrics for the California Housing and GMSC datasets (Table 4.1) and
the MNIST dataset (Table 4.2). For each metric, the best outcomes are highlighted
in bold. Asterisks indicate that the given value is more than one (*) or two (*¥)
standard deviations away from the baseline (Wachter). For the tabular datasets, we
use the default Euclidean distance to measure unfaithfulness and implausibility as
defined in Equation 4.6 and Equation 4.5, respectively. The third metric presented
in Table 4.1 quantifies the predictive uncertainty of the counterfactual as measured
by Equation 4.4. For the vision datasets, we rely on measuring the structural dis-
similarity between images for our unfaithfulness and implausibility metrics (Wang,
Simoncelli, and Bovik 2003).
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4.6.2. FAITHFULNESS

Table 4.1. Results for tabular datasets: sample averages + /- one standard deviation
across valid counterfactuals. Best outcomes are highlighted in bold. As-
terisks indicate that the given value is more than one (*) or two (**)
standard deviations away from the baseline ( Wachter)

California Housing GMSC

Model Generator Unfaithfulness | Implausibility | Uncertainty | Unfaithfulness | Implausibility | Uncertainty |
ECCCo 3.69 £ 0.08** 1.94 +0.13 0.09 £ 0.01** 3.84 £ 0.07%* 2.13 £ 0.08 0.23 £ 0.01%*
ECCCo+ 3.88 4 0.07** 1.20 & 0.09 0.15 4 0.02 3.79 £ 0.05%* 1.81 + 0.05 0.30 + 0.01*
ECCCo (no CP) 3.70 + 0.08%* 1.94 £ 0.13 0.10 £ 0.01%*  3.85 & 0.07** 2.13 £ 0.08 0.23 + 0.01%*

MLP Ensemble ECCCo (no EBM)  4.03 + 0.07 1.12 £ 0.12 0.14 + 0.01%*  4.08 £ 0.06 0.97 £ 0.08 0.31 + 0.01*
REVISE 3.96 + 0.07* 0.58 & 0.03**  0.17 & 0.03 4.09 & 0.07 0.63 + 0.02**  0.33 & 0.06
Schut 4.00 £ 0.06 1.15 £ 0.12 0.10 + 0.01%*  4.04 £ 0.08 1.21 £ 0.08 0.30 + 0.01*
Wachter 4.04 £ 0.07 1.13 £ 0.12 0.16 + 0.01 4.10 + 0.07 0.95 & 0.08 0.32 + 0.01
ECCCo 1.40 + 0.08** 0.69 + 0.05%*  0.11 £ 0.00%*  1.20 + 0.06* 0.78 + 0.07**  0.38 + 0.01
ECCCo+ 1.28 £ 0.08** 0.60 &+ 0.04**  0.11 £ 0.00%*  1.01 + 0.07** 0.70 + 0.07%*  0.37 £ 0.01
ECCCo (no CP) 1.39 + 0.08** 0.69 + 0.05%*  0.11 £ 0.00%*  1.21 + 0.07* 0.77 + 0.07**  0.39 + 0.01

JEM Ensemble ECCCo (no EBM) 1.70 + 0.09 0.99 £ 0.08 0.14 + 0.00% 1.31 £ 0.07 0.97 £+ 0.10 0.32 + 0.01%*
REVISE 1.39 + 0.15%* 0.59 & 0.04**  0.25 £ 0.07 1.01 £ 0.07** 0.63 + 0.04**  0.33 £ 0.07
Schut 1.59 + 0.10* 1.10 + 0.06 0.09 + 0.00%*  1.34 £ 0.07 1.21 £ 0.10 0.26 & 0.01%*
Wachter 1.71 £ 0.09 0.99 £+ 0.08 0.14 £ 0.00 1.31 £ 0.08 0.95 + 0.10 0.33 + 0.01

Overall, we find strong empirical evidence suggesting that ECCCo consistently
achieves state-of-the-art faithfulness. Across all models and datasets highlighted
here, different variations of FCCCo consistently outperform other generators with
respect to faithfulness, in many cases substantially. This pattern is mostly robust
across all other datasets.

In particular, we note that the best results are generally obtained when using the
full ECCCo objective (Equation 4.9). In other words, constraining both energy
and predictive uncertainty typically yields the most faithful counterfactuals. We
expected the former to play a more significant role in this context and that is
typically what we find across all datasets. The results in Table 4.1 indicate that
faithfulness can be improved substantially by relying solely on the energy constraint
(ECCCo (no CP)). In most cases, however, the full objective yields the most faithful
counterfactuals. This indicates that predictive uncertainty minimization plays an
important role in achieving faithfulness.

We also generally find that latent space search does not impede faithfulness for EC-
CCo. In most cases ECCCo+ is either on par with ECCCo or even outperforms
it. There are some notable exceptions though. Cases in which ECCCo achieves
substantially better faithfulness without latent space search tend to involve more
vulnerable models like the simple MLP for MNIST in Table 4.2. We explain this
finding as follows: even though dimensionality reduction through PCA in the case of
ECCCo+ can be considered a relatively mild form of intervention, the first n, prin-
cipal components fail to capture some of the variation in the data. More vulnerable
models may be particularly sensitive to this residual variation in the data.

Consistent with this finding, we also observe that REVISFE ranks higher for faithful-
ness, if the model itself has learned more plausible representations of the underlying
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data: REVISE generates more faithful counterfactuals than the baseline for the

JEM Ensemble in Table 4.1 and the LeNet-5 CNN in Table 4.2. This demonstrates

that the two desiderata—faithfulness and plausibility—are not mutually exclusive.

4.6.3. BALANCING DESIDERATA

Factual ECCCo

Figure 4.3. Counterfactuals for turning a 3 into a 5: factual (left), then the counter-
factuals generated by ECCCo, ECCCo+, REVISE, Schut and Wachter.

Table 4.2. Results for vision dataset.

ECCCo+

BHHEHEBE

REVISE

Schut

Wachter

Formatting details are the same as in

Table 4.1.
MNIST
Model Generator Unfaithfulness | Implausibility |
ECCCo 0.243 £ 0.000**  0.420 + 0.001
ECCCo+  0.246 + 0.000*  0.306 4+ 0.001**
MLP REVISE 0.248 + 0.000 0.301 + 0.004**
Schut 0.247 £+ 0.001 0.303 £ 0.008%**
Wachter 0.247 + 0.000 0.344 + 0.002
ECCCo 0.248 + 0.000**  0.387 + 0.002
ECCCo+  0.248 £ 0.000** 0.310 4+ 0.002**
LeNet-5 REVISE 0.248 £+ 0.000**  0.301 £ 0.002**
Schut 0.250 4+ 0.002 0.289 + 0.024*
Wachter 0.249 + 0.000 0.335 4+ 0.002

Overall, we find strong empirical evidence suggesting that FCCCo can achieve near
state-of-the-art plausibility without sacrificing faithfulness. Figure 4.3 shows one
such example taken from the MNIST benchmark where the objective is to turn
the factual ‘three’ (far left) into a ‘five’. The underlying model is a LeNet-5 CNN.
The different images show the counterfactuals produced by the generators, of which
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all but the one produced by Schut are valid. Both variations of ECCCo produce
plausible counterfactuals.

Looking at the benchmark results presented in Table 4.1 and Table 4.2 we firstly note
that although REVISE generally performs best, ECCCo and in particular ECCCo+
often approach SOTA performance. Upon visual inspection of the generated images
we actually find that ECCCo+ performs much better than REVISE (see appendix).
Zooming in on the details we observe that ECCCo and its variations do particularly
well, whenever the underlying model has been explicitly trained to learn plausible
representations of the data. For both tabular datasets in Table 4.1, ECC'Co improves
plausibility substantially compared to the baseline. This broad pattern is mostly
consistent for all other datasets, although there are notable exceptions for which
ECCCo takes the lead on both plausibility and faithfulness.

While we maintain that generally speaking plausibility should hinge on the quality
of the model, our results also indicate that it is possible to balance faithfulness and
plausibility if needed: ECCCo+ generally outperforms other variants of ECCCo in
this context, occasionally at the small cost of slightly reduced faithfulness. For the
vision datasets especially, we find that EFCCCo+ is consistently second only to RE-
VISE for all models and regularly substantially better than the baseline. Looking
at the California Housing data, latent space search markedly improves plausibility
without sacrificing faithfulness: for the JEM Ensemble, ECCCo+ performs substan-
tially better than the baseline and only marginally worse than REVISE. Importantly,
ECCCo+ does not attain plausibility at all costs: for the MLP Ensemble, plausib-
ility is still very low, but this seems to faithfully represent what the model has
learned.

We conclude from the findings presented thus far that EC'CCo enables us to reconcile
the objectives of faithfulness and plausibility. It produces plausible counterfactuals
if and only if the model itself has learned plausible explanations for the data. It
thus avoids the risk of generating plausible but potentially misleading explanations
for models that are highly susceptible to implausible explanations.

4.6.4. ADDITIONAL DESIDERATA

While we have deliberately focused on our key metrics of interest so far, it is worth
briefly considering other common desiderata for counterfactuals. With reference to
the right-most columns for each dataset in Table 4.1, we firstly note that ECCCo typ-
ically reduces predictive uncertainty as intended. Consistent with its design, Schut
performs well on this metric even though it does not explicitly address uncertainty
as measured by conformal prediction set sizes.

Another commonly discussed desideratum is closeness (Wachter, Mittelstadt, and
Russell 2017): counterfactuals that are closer to their factuals are associated with
smaller costs to individuals in the context of algorithmic recourse. As evident from
the additional tables in the appendix, the closeness desideratum tends to be negat-
ively correlated with plausibility and faithfulness. Consequently, both REVISE and
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ECCCo generally yield more costly counterfactuals than the baseline. Nonetheless,
ECCCo does not seem to stretch costs unnecessarily: in Figure 4.3 useful parts of
the factual ‘three’ are clearly retained.

47. LIMITATIONS

Despite having taken considerable measures to study our methodology carefully,
limitations can still be identified.

Firstly, we recognize that our proposed distance-based evaluation metrics for plaus-
ibility and faithfulness may not be universally applicable to all types of data. In
any case, they depend on choosing a distance metric on a case-by-case basis, as
we have done in this work. Arguably, commonly used metrics for measuring other
desiderata such as closeness suffer from the same pitfall. We therefore think that
future work on counterfactual explanations could benefit from defining universal
evaluation metrics.

Relatedly, we note that our proposed metric for measuring faithfulness depends on
the availability of samples generated through SGLD, which in turn requires gradi-
ent access for models. This means it cannot be used to evaluate non-differentiable
classifiers. Consequently, we also have not applied ECCCo to some machine learn-
ing models commonly used for classification such as decision trees. Since FCCCo
itself does not rely on SGLD, its defining penalty functions are indeed applicable
to gradient-free counterfactual generators. This is an interesting avenue for future
research.

Next, common challenges associated with energy-based modelling including sensit-
ivity to scale, training instabilities and sensitivity to hyperparameters also apply
to ECCCo to some extent. In grid searches for optimal hyperparameters, we have
noticed that unless properly regularized, ECCCo is sometimes prone to overshoot
for the energy constraint.

Finally, while we have used ablation to understand the roles of the different compon-
ents of FCCCo, the scope of this work has prevented us from investigating the role
of conformal prediction in this context more thoroughly. We have exclusively relied
on split conformal prediction and have used fixed values for the predetermined error
rate and other hyperparameters. Future work could benefit from more extensive
ablation studies that tune hyperparameters and investigate different approaches to
conformal prediction.

4.8. CONCLUSION

This work leverages ideas from energy-based modelling and conformal prediction in
the context of counterfactual explanations. We have proposed a new way to gen-
erate counterfactuals that are maximally faithful to the black-box model they aim
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to explain. Our proposed generator, ECCCo, produces plausible counterfactuals
iff the black-box model itself has learned realistic explanations for the data, which
we have demonstrated through rigorous empirical analysis. This should enable re-
searchers and practitioners to use counterfactuals in order to discern trustworthy
models from unreliable ones. While the scope of this work limits its generalizability,
we believe that ECCCo offers a solid base for future work on faithful counterfactual
explanations.
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COUNTERFACTUAL TRAINING:
TEACHING MODELS PLAUSIBLE
AND ACTIONABLE
EXPLANATIONS

We propose a novel training regime termed counterfactual training that leverages
counterfactual explanations to increase the explanatory capacity of models. Coun-
terfactual explanations have emerged as a popular post-hoc explanation method for
opaque machine learning models: they inform how factual inputs would need to
change in order for a model to produce some desired output. To be useful in real-
world decision-making systems, counterfactuals should be plausible with respect to
the underlying data and actionable with respect to the feature mutability constraints.
Much existing research has therefore focused on developing post-hoc methods to
generate counterfactuals that meet these desiderata. In this work, we instead hold
models directly accountable for the desired end goal: counterfactual training em-
ploys counterfactuals during the training phase to minimize the divergence between
learned representations and plausible, actionable explanations. We demonstrate em-
pirically and theoretically that our proposed method facilitates training models that
deliver inherently desirable counterfactual explanations and additionally exhibit im-
proved adversarial robustness.
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This chapter will be published in proceedings of the 2026 IEEE Conference
on Secure and Trustworthy Machine Learning (SaTML) and will list Patrick
Altmeyer, Aleksander Buszydlik, Arie van Deursen and Cynthia C. S. Liem
as authors (2026). See Chapter 1.8 for additional publication details.

5.1. INTRODUCTION

Today’s prominence of artificial intelligence (AI) has largely been driven by the suc-
cess of representation learning with high degrees of freedom: instead of relying on
features and rules hand-crafted by humans, modern machine learning (ML) mod-
els are tasked with learning highly complex representations directly from the data,
guided by narrow objectives such as predictive accuracy (Goodfellow, Bengio, and
Courville 2016). These models tend to be so complex that humans cannot easily
interpret their decision logic.

Counterfactual explanations (CE) have become a key part of the broader explainable
AT (XAI) toolkit (Molnar 2022) that can be applied to make sense of this complex-
ity. They prescribe minimal changes for factual inputs that, if implemented, would
prompt some fitted model to produce an alternative, more desirable output (Wachter,
Mittelstadt, and Russell 2017). This is useful and necessary to not only understand
how opaque models make their predictions, but also to provide algorithmic recourse
to individuals subjected to them: a retail bank, for example, could use CE to provide
meaningful feedback to unsuccessful loan applicants that were rejected based on an
opaque automated decision-making (ADM) system (Figure 5.1).

For such feedback to be meaningful, counterfactual explanations need to fulfill cer-
tain desiderata (Verma et al. 2022; Karimi et al. 2021)—they should be faithful to
the model (Altmeyer, Farmanbar, et al. 2024b), plausible (Joshi et al. 2019), and
actionable (Ustun, Spangher, and Liu 2019). Plausibility is typically understood as
counterfactuals being in-domain: unsuccessful loan applicants that implement the
provided recourse should end up with credit profiles that are genuinely similar to
that of individuals who have successfully repaid their loans in the past. Actionable
explanations further comply with practical constraints: a young, unsuccessful loan
applicant cannot increase their age in an instant.

Existing state-of-the-art (SOTA) approaches in the field have largely focused on
designing model-agnostic CE methods that identify subsets of counterfactuals, which
comply with specific desiderata. This is problematic because the narrow focus on
any specific desideratum can adversely affect others: it is possible, for example,
to generate plausible counterfactuals for models that are also highly vulnerable
to implausible, possibly adversarial counterfactuals (Altmeyer, Farmanbar, et al.
2024b). Indeed, existing approaches generally fail to guarantee that the representa-
tions learned by a model are compatible with truly meaningful explanations.
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In this work, we propose an approach to bridge this gap, embracing the paradigm
that models—as opposed to explanation methods—should be held accountable for
explanations that are plausible and actionable. While previous work has shown that
at least plausibility can be indirectly achieved through existing techniques aimed at
models’ generative capacity, generalization and robustness (Altmeyer, Farmanbar,
et al. 2024b; Augustin, Meinke, and Hein 2020; Schut et al. 2021), we directly
incorporate both plausibility and actionability in the training objective of models
to improve their overall explanatory capacity.

Specifically, we introduce counterfactual training (CT): a novel training regime that
leverages counterfactual explanations on-the-fly to ensure that differentiable mod-
els learn plausible and actionable explanations for the underlying data, while at the
same time being more robust to adversarial examples (AE). Figure 5.1 illustrates
the outcomes of CT compared to a conventionally trained model. First, in panel
(a), faithful and valid counterfactuals end up near the decision boundary forming
a clearly distinguishable cluster in the target class (orange). In panel (b), CT is
applied to the same underlying linear classifier architecture resulting in much more
plausible counterfactuals. In panel (c¢), the classifier is again trained conventionally
and we have introduced a mutability constraint on the age feature at test time—
counterfactuals are valid but the classifier is roughly equally sensitive to both fea-
tures. By contrast, the decision boundary in panel (d) has tilted, making the model
trained with CT relatively less sensitive to the immutable age feature. To achieve
these outcomes, CT draws inspiration from the literature on contrastive and ro-
bust learning: we contrast faithful CEs with ground-truth data while protecting
immutable features, and capitalize on methodological links between CE and AE
by penalizing the model’s adversarial loss on interim (nascent) counterfactuals. To
the best of our knowledge, CT represents the first venture in this direction with
promising empirical and theoretical results.

The remainder of this manuscript is structured as follows. Section 5.2 presents re-
lated work, focusing on the links to contrastive and robust learning. Then follow our
two principal contributions. In Section 5.3, we introduce our methodological frame-
work and show theoretically that it can be employed to respect global actionability
constraints. In our experiments (Section 5.4), we find that thanks to counterfactual
training, (1) the implausibility of CEs decreases by up to 90%; (2) the cost of reach-
ing valid counterfactuals with protected features decreases by 19% on average; and
(3) models’ adversarial robustness improves across the board. Finally, we discuss
open challenges in Section 5.5 and conclude in Section 5.6.

5.2. RELATED LITERATURE

To make the desiderata for CT more concrete, we follow previous work, tying the
explanatory capacity of models to the quality of CEs that can be generated for them
(Altmeyer, Farmanbar, et al. 2024b; Augustin, Meinke, and Hein 2020).



90 5. COUNTERFACTUAL TRAINING

(c)

Age (mutable)
Age (mutable)
Age (immutable)
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Debt (mutable) Debt (mutable) Debt (mutable) Debt (mutable)

Figure 5.1. Counterfactual explanations (stars) for linear classifiers trained under
different regimes on synthetic data: (a) conventional training, all mut-
able; (b) CT, all mutable; (c) conventional, age immutable; (d) CT,
age immutable. The linear decision boundary is shown in green along
with training data colored according to ground-truth labels: y~ =
"loan withheld” (blue) and y© = "loan provided” (orange). Class and
feature annotations (debt and age) are for illustrative purposes.

5.2.1. EXPLANATORY CAPACITY AND CONTRASTIVE LEARNING

A closely related work shows that model averaging and, in particular, contrastive
model objectives can produce models that have a higher explanatory capacity, and
hence ones that are more trustworthy (Altmeyer, Farmanbar, et al. 2024b). The
authors propose a way to generate counterfactuals that are maximally faithful in
that they are consistent with what models have learned about the underlying data.
Formally, they rely on tools from energy-based modelling (Teh et al. 2003) to
minimize the contrastive divergence between the distribution of counterfactuals and
the conditional posterior over inputs learned by a model. Their algorithm, ECCCo,
yields plausible counterfactual explanations if and only if the underlying model has
learned representations that align with them. The authors find that both deep
ensembles (Lakshminarayanan, Pritzel, and Blundell 2017) and joint energy-based
models (JEMs) (Grathwohl et al. 2020), a form of contrastive learning, do well in
this regard.

It helps to look at these findings through the lens of representation learning with
high degrees of freedom. Deep ensembles are approximate Bayesian model averages,
which are particularly effective when models are underspecified by the available
data (Wilson 2020). Averaging across solutions mitigates the risk of overrelying on
a single locally optimal representation that corresponds to semantically meaningless
explanations. Likewise, it has been shown that generating plausible (“interpretable”)
CEs is almost trivial for deep ensembles that have undergone adversarial training
(Schut et al. 2021). The case for JEMs is even clearer: they optimize a hybrid
objective that induces both high predictive performance and strong generative capa-
city (Grathwohl et al. 2020), resembling the idea of aligning models with plausible
explanations. This was an inspiration for CT.
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5.2.2. EXPLANATORY CAPACITY AND ROBUST LEARNING

Prior work has shown that counterfactual explanations tend to be more meaningful
(“explainable”) if the underlying model is more robust to adversarial examples (Au-
gustin, Meinke, and Hein 2020). Once again, we can make intuitive sense of this
finding if we look at adversarial training (AT) through the lens of representation
learning with high degrees of freedom: highly complex and flexible models may learn
representations that make them sensitive to implausible or even adversarial examples
(Szegedy et al. 2014). Thus, by inducing models to “unlearn” susceptibility to such
examples, adversarial training can effectively remove implausible explanations from
the solution space.

This interpretation of the link between explanatory capacity through counterfactu-
als on the one side, and robustness to adversarial examples on the other is backed
by empirical evidence. Firstly, prior work has shown that using counterfactual im-
ages during classifier training improves model robustness (Sauer and Geiger 2021).
Similarly, related work has shown that counterfactuals represent potentially useful
training data in machine learning tasks, especially in supervised settings where in-
puts may be reasonably mapped to multiple outputs (Abbasnejad et al. 2020). The
authors show that augmenting the training data of (image) classifiers can improve
generalization performance. Finally, another related work has demonstrated that
counterfactual pairs tend to exist in training data (Teney, Abbasnedjad, and Hengel
2020). Hence, the proposed approach aims to identify similar inputs with different
annotations and ensure that the gradient of the classifier aligns with the vector
between such pairs of inputs using a cosine distance loss function.

CEs have also been used to improve models in the natural language processing
domain. A well-known paper in this domain has proposed Polyjuice (Wu et al. 2021),
a general-purpose CE generator for language models. The authors demonstrate that
the augmentation of training data with Polyjuice improves robustness in a number
of tasks. Related work has introduced the Counterfactual Adversarial Training
(CAT) framework (Luu and Inoue 2023), which aims to improve generalization and
robustness of language models by generating counterfactuals for training samples
that are subject to high predictive uncertainty.

There have also been several attempts at formalizing the relationship between coun-
terfactual explanations and adversarial examples. Pointing to clear similarities in
how CEs and AEs are generated, prior work makes the case for jointly studying the
opaqueness and robustness problems in representation learning (Freiesleben 2022).
Formally, the authors show that AEs can be seen as the subset of CEs for which
misclassification is achieved (Freiesleben 2022). Similarly, others have shown that
CEs and AEs are equivalent under certain conditions (Pawelczyk et al. 2022).

Two other works are closely related to ours in that they use counterfactuals dur-
ing training with the explicit goal of affecting certain properties of the post-hoc
counterfactual explanations. The first closely related work has proposed a way to
train models that guarantee recourse to a positive target class with high probability
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(Ross, Lakkaraju, and Bastani 2024). The approach builds on adversarial training
by explicitly inducing susceptibility to targeted AEs for the positive class. Addition-
ally, the method allows for imposing a set of actionability constraints ex-ante. For
example, users can specify that certain features are immutable. A second closely
related work has introduced the first end-to-end training pipeline that includes CEs
as part of the training procedure (Guo, Nguyen, and Yadav 2023); the CounterNet
network architecture includes a predictor and a CE generator, where the parameters
of the CE generator are learnable. Counterfactuals are generated during each train-
ing iteration and fed back to the predictor. In contrast, we impose no restrictions
on the artificial neural network architecture at all.

5.3. COUNTERFACTUAL TRAINING

This section introduces the counterfactual training framework, applying ideas from
contrastive and robust learning to counterfactual explanations. CT produces models
whose learned representations align with plausible explanations that comply with
user-defined actionability constraints.

Counterfactual explanations are typically generated by solving variations of the
following optimization problem,

min_{yloss(My(x),y*) + Areg(x')} (5.1)

x'exP

where My : X = Y denotes a classifier, x” denotes the counterfactual with D features
and y* € ¥ denotes some target class. The yloss(-) function quantifies the discrep-
ancy between current model predictions for x” and the target class (a conventional
choice is cross-entropy). Finally, we use reg(-) to denote any form of regulariz-
ation used to induce certain properties on the counterfactual. The seminal CE
paper, (Wachter, Mittelstadt, and Russell 2017), proposes regularizing the distance
between counterfactuals and their original factual values to ensure that individuals
seeking recourse through CE face minimal costs in terms of feature changes. Dif-
ferent variations of Equation 5.1 have been proposed in the literature to address
many desiderata including the ones discussed above (faithfulness, plausibility and
actionability). Much like in the seminal work (Wachter, Mittelstadt, and Russell
2017), most of these approaches rely on gradient descent to optimize Equation 5.1,
and this holds true for all approaches tested in this work. We introduce them briefly
in Section 5.4.1, but refer the reader to the supplementary appendix for details. In
the following, we describe how counterfactuals are generated and used in CT.

5.3.1. PROPOSED TRAINING OBJECTIVE

The goal of CT is to improve the explanatory capacity of models by aligning the
learned representations with faithful explanations that are plausible and actionable.
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For simplicity, we refer to models with high explanatory capacity as explainable in
this manuscript. We define explainability as follows:

Definition 5.1 (Model Explainability). Let My : X — ¥ denote a supervised classi-
fication model that maps from the D-dimensional input space X' to representations
¢(x;0) and finally to the K-dimensional output space Y. Let x{, denote a factual
input and assume that for any given input-output pair {x(,y}, there exists a coun-
terfactual X = xi + A : My(x') = y* #y = My(x), where argmax,y" = y* is the
index of the target class.

We say that M, has an explanatory capacity to the extent that faithfully generated,
valid counterfactuals are also plausible and actionable. We define these properties
as:

o (Faithfulness) P(x’ € Xyly") = 1—4, where ¢ is some small value, and X|y™
is the conditional posterior distribution over inputs (adapted from (Altmeyer,
Farmanbar, et al. 2024b), Def. 4.1).

o (Plausibility) P(x’ € X|y*) = 1 — 4, where ¢ is some small value, and X|y*
is the conditional distribution of inputs in the target class (adapted from
(Altmeyer, Farmanbar, et al. 2024Db), Def. 2.1).

o (Actionability) Perturbations A may be subject to some actionability con-
straints.

Intuitively, plausible counterfactuals are consistent with the data, and faithful coun-
terfactuals are consistent with what the model has learned about the input data.
Actionability constraints in Definition 5.1 depend on the context in which My is
deployed (e.g., specified by end-users or model owners). We consider two types of
actionability constraints: on the domain of features and on their mutability. The
former naturally arise in automated decision-making systems whenever a feature
can only take a specific range of values. For example, age is lower bounded by
zero and upper bounded by the maximum human lifespan. Specifying such domain
constraints can also help address training instabilities commonly associated with
energy-based modelling (Grathwohl et al. 2020). The latter arise when a feature
cannot be freely modified. Continuing the example, age of a person can only in-
crease, but it may even be considered as an immutable feature: waiting many years
for an improved outcome is hardly feasible for individuals affected by algorithmic
decisions. We choose to only consider domain and mutability constraints for indi-
vidual features z; for d = 1, ..., D. Of course, this is a simplification since feature
values may correlate, e.g., higher age may be associated with higher level of com-
pleted education. We address this challenge in Section 5.5, where we also explain
why we restrict this work to classification settings.

Let x; for ¢t = 0,...,T denote a counterfactual generated through gradient descent
over T iterations as originally proposed (Wachter, Mittelstadt, and Russell 2017).
CT adopts gradient-based CE search in training to generate on-the-fly model ex-
planations x’ for the training samples. We use the term nascent to denote interim
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counterfactuals x, , that have not yet converged. As we explain below, these nas-
cent counterfactuals can be stored and repurposed as adversarial examples. Con-
versely, we consider counterfactuals x¢ as mature explanations if they have con-
verged within the T iterations by reaching a pre-specified threshold, 7, for the pre-
dicted probability of the target class: S(My(x'))[y"] > 7, where § is the softmax
function.

Formally, we propose the following counterfactual training objective to train explain-
able (as in Definition 5.1) models,

mein leSS(MG (X)’ y) + )‘divdiv(x+a XE}E? y+; 9)
(5.2)
+)‘adva’dVIOSS(M0(x;§E)’ yAE) + )‘regridge(x+7 X/CE’ Y3 9)

where yloss(+) is any classification loss that induces discriminative performance (e.g.,
cross-entropy). The second and third terms are explained in detail in the following
subsections. For now, they can be summarized as inducing explainability directly
and indirectly by penalizing (1) the contrastive divergence, div(-), between mature
counterfactuals x¢p and observed samples x* € X" = {x : y = y*} in the tar-
get class y*, and (2) the adversarial loss, advloss(.), wrt. nascent counterfactuals
x/yp and their corresponding labels y,p. Finally, ridge(-) denotes a Ridge penalty
(squared ¢5-norm) that regularizes the magnitude of the energy terms involved in
the contrastive divergence, div(:), term (Du and Mordatch 2020):

1 nCE ,
— > (Eex ") + &xCp,v7)?) (5:3)
"cE =1

The trade-offs between these components are adjusted through penalties Ay;y,, Aadys
and A,

The full counterfactual training regime is sketched out in Algorithm 5.1. During
each iteration, we do the following steps. Firstly, we randomly draw a subset of
neg < n factuals x{, from X of size n, for which we uniformly draw a target class y*
(ensuring that it does not coincide with the class currently predicted for x;) and a
corresponding training sample from the target class, x* ~X* = {x e X:y = y*}.
Secondly, we conduct the counterfactual search by solving (Equation 5.1) through
gradient descent. Thirdly, we sample mini-batches (xi,yi):z1 from the training
dataset D = (X,Y) for conventional training and distribute the tuples composed
of counterfactuals, their target labels and corresponding training samples, as well
as adversarial examples and corresponding labels, (xéEwy*i,xAEi,yAEﬁx*i)?fﬁ

across the mini-batches. Finally, we backpropagate through (Equation 5.2).
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Algorithm 5.1 Pseudo-Code for Counterfactual Training

Require: Training dataset 2, initialize model M,
1: while not converged do
2: Sample x{ ~ X, y© ~ U(Y) and x™ ~ X7
3 for t =1to T do
4 Backpropagate V,, through equation (5.1)
5 Store Xop, Xap, YAE
6: end for
7 Sample mini-batches (x;, yi)?:bl from dataset D
8 Distribute (xéEi,y*i,xin,yAwa*i)?:ClE
9: for each batch do
10: Backpropagate V, through equation (5.2)
11: end for
12: end while
13: return M,

By limiting ourselves to a subset of nyp counterfactuals, we reduce runtimes; this
approach has previously been shown to improve efficiency in the context of ad-
versarial training (Kurakin, Goodfellow, and Bengio 2017; Kaufmann et al. 2022).
To improve runtimes even more, we choose to first generate counterfactuals and
then distribute them across mini-batches to benefit from greater degrees of paral-
lelization during the counterfactual search. Alternatively, it is possible to generate
counterfactuals separately for each mini-batch.!

5.3.2. DIRECTLY INDUCING EXPLAINABILITY. CONTRASTIVE
DIVERGENCE

As observed in prior related work (Grathwohl et al. 2020), any classifier can be
re-interpreted as a joint energy-based model that learns to discriminate output
classes conditional on the observed (training) samples from p(x) and the gener-
ated samples from py(x). The authors show that JEMs can be trained to perform
well at both tasks by directly maximizing the joint log-likelihood: logpy(x,y) =
log pp(y]x) + log pg(x), where the first term can be optimized using cross-entropy as
in Equation 5.2. To optimize logp,(x), they minimize the contrastive divergence
between the observed samples from p(x) and samples generated from py(x).

To generate samples, the paper introducing JEMs (Grathwohl et al. 2020) suggests
relying on Stochastic Gradient Langevin Dynamics (SGLD) with an uninformative
prior for initialization but we depart from this methodology: we propose to leverage
counterfactual explainers to generate counterfactuals of observed training samples.
Specifically, we have:

'During initial prototyping of CT we also tested an implementation that relies on generating
counterfactuals and adversarial examples at the batch level with no discernible difference in
outcomes, but increased training times.
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div(x", xgg, y 3 0) = Ep(x,y") — Ep(xem, y™) (5.4)

where &£y(-) denotes the energy function defined as &y(x,y") = —M,(x)[y"], with y*
denoting the index of the randomly drawn target class, y+ ~ p(y). Conditional on
the target class y*, x( denotes a mature counterfactual for a randomly sampled
factual from a non-target class generated with a gradient-based CE generator for
up to T iterations. Intuitively, the gradient of Equation 5.4 decreases the energy
of observed training samples (positive samples) while increasing the energy of coun-
terfactuals (negative samples) (Du and Mordatch 2020). As the counterfactuals
get more plausible (Definition 5.1) during training, these opposing effects gradually
balance each other out (Lippe 2024).

Since the maturity of counterfactuals in terms of a probability threshold is often
reached before T', this form of sampling is not only more closely aligned with Defin-
ition 5.1., but can also speed up training times compared to SGLD. The departure
from SGLD also allows us to tap into the vast repertoire of explainers that have
been proposed in the literature to meet different desiderata. For example, many
methods support domain and mutability constraints. In principle, any approach
for generating CEs is viable, so long as it does not violate the faithfulness condi-
tion. Like JEMs (Murphy 2022), counterfactual training can be viewed as a form
of contrastive representation learning.

5.3.3. INDIRECTLY INDUCING EXPLAINABILITY: ADVERSARIAL
ROBUSTNESS

Based on our analysis in Section 5.2, counterfactuals x” can be repurposed as addi-
tional training samples (Balashankar et al. 2023; Luu and Inoue 2023) or adversarial
examples (Freiesleben 2022; Pawelczyk et al. 2022). This leaves some flexibility with
regards to the choice for the advloss(-) term in Equation 5.2. An intuitive functional
form, but likely not the only sensible choice, is inspired by adversarial training:

advloss(My(x} ), y; €) = yloss(My(x;_),y)

to= max{t+ [|A, ]l <€) (5:5)

Under this choice, we consider nascent counterfactuals x), as AEs as long as the
magnitude of the perturbation at time ¢ (A,) to any single feature is at most e.
The most strongly perturbed counterfactual x; that still satisfies the condition
is used as an adversarial example x), . This formalization is closely aligned with
seminal work on adversarial machine learning (Szegedy et al. 2014), which defines an
adversarial attack as an “imperceptible non-random perturbation”. Thus, we work
with a different distinction between CE and AE than the one proposed in prior work
(Freiesleben 2022), which considers misclassification as the distinguishing feature
of adversarial examples. One of the key observations of our work is that we can
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leverage CEs during training and get AEs essentially for free to reap the benefits of
adversarial training, leading to improved adversarial robustness and plausibility.

5.3.4. ENCODING ACTIONABILITY CONSTRAINTS

Many existing counterfactual explainers support domain and mutability constraints.
In fact, both types of constraints can be implemented for any explainer that relies on
gradient descent in the feature space for optimization (Altmeyer, Deursen, and Liem
2023a). In this context, domain constraints can be imposed by simply projecting
counterfactuals back to the specified domain; if the previous gradient step resulted
in updated feature values that were out-of-domain. Similarly, mutability constraints
can be enforced by setting partial derivatives to zero to ensure that features are only
perturbed in the allowed direction, if at all.

As actionability constraints are binding at test time, we must also impose them
when generating x” during each training iteration to inform model representations.
Through their effect on x’, both types of constraints influence model outcomes
via Equation 5.4. It is crucial that we avoid penalizing implausibility that arises
from mutability constraints. For any mutability-constrained feature d this can be
achieved by enforcing x*[d] — x’[d] := 0, whenever perturbing x’[d] in the direction
of x*[d] would violate mutability constraints defined for d. Specifically, we set
xt[d] := x'[d] if:

1. Feature d is strictly immutable in practice.
2. x7[d] > x'[d], but d can only be decreased in practice.

3. x*[d] < x'[d], but d can only be increased in practice.

From a Bayesian perspective, setting x*[d] := x’[d] can be understood as assuming
a point mass prior for p(x") with respect to feature d, i.e., we can model this as
absolute certainty that the value x*[d] remains the same as in the neighbor, x’[d],
but it could be equivalently seen as masking changes to feature d. Intuitively, we
can think of this as ignoring implausibility costs of immutable features, which effect-
ively forces the model to instead seek plausibility through the remaining features.
This can be expected to produce a classifier with relatively lower sensitivity to
immutable features, and the higher relative sensitivity to mutable features should
make mutability-constrained recourse less costly (see Section 5.4). Under certain
conditions, this result also holds theoretically (for the proof, see the supplementary
appendix):

Proposition 5.1 (Protecting Immutable Features). Let fy(x) = S(My(x)) = §(Ox)
denote a linear classifier with softmax activation 8 wherey € {1,...., K} = X, x € RP
and © is the matriz of coefficients with 0, , = ©[k,d] denoting the coefficient on
feature d for class k. Assume multivariate Gaussian class densities with a common
diagonal covariance matriz ¥, = 3 for all k € X, then protecting an immutable fea-
ture from the contrastive divergence penalty will result in lower classifier sensitivity
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to that feature relative to the remaining features, provided that at least one of those
is discriminative and mutable.

5.4. EXPERIMENTS

We start by introducing the experimental setup, including performance metrics,
datasets, algorithms, and explain our approach to evaluation in Section 5.4.1. Then,
we address the research questions (RQ). Two questions relating to the principal
goals of counterfactual training are presented in Section 5.4.2:

Research Question 5.1. To what extent does the CT objective in Equation 5.2 induce
models to learn plausible explanations?

Research Question 5.2. To what extent does CT result in more favorable algorithmic
recourse outcomes in the presence of actionability constraints

Next, in Section 5.4.3 we consider the performance of models trained with CT,
focusing on their adversarial robustness but also commenting on the validity of
generated CEs.

Research Question 5.3. To what extent does CT influence the adversarial robustness
of trained models?

Finally, in Section 5.4.4 we perform an ablation of the CT objective and evaluate
its sensitivity to hyperparameters:

Research Question 5.4. How does the CT objective depends on its individual com-
ponents? (ablation)

Research Question 5.5. What are the effects of hyperparameter selection on coun-
terfactual training?

5.4.1. EXPERIMENTAL SETUP

Our focus is the improvement in explainability (Definition 5.1). Thus, we mainly
look at the plausibility and cost of faithfully generated counterfactuals at test time,
but several other metrics are covered in the supplementary appendix. To measure
the cost, we follow the standard proxy of distances (¢;-norm) between factuals and
counterfactuals. For plausibility, we assess how similar CEs are to observed samples
in the target domain, X* C X'*. For the evaluation, we rely on the metric proposed
in prior work (Altmeyer, Farmanbar, et al. 2024b) with ¢;-norm for distances,
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IP(x', X")

Z dist(x’, x) (5.6)

xeX+t

X+|
and introduce a novel divergence-based adaptation,

IP*(X/,X*) = MMD(X’, X™) (5.7)

where X’ denotes a collection of counterfactuals and MMD(-) is the unbiased estim-
ate of the squared population maximum mean discrepancy (Gretton et al. 2012):

MMD(X/, X+) =

+ m;zk(i‘ﬂi‘]) (5.8)

with a kernel function k(-,-). We use a characteristic Gaussian kernel with a constant
length-scale parameter of 0.5, which means that the metric in Equation 5.7 is equal
to zero if and only if the two distributions are exactly the same, X’ = X™.

To assess outcomes with respect to actionability for non-linear models, we look at the
costs of (just) valid counterfactuals in terms of their distances from factual starting
points with 7 = 0.5. While this is an imperfect proxy of sensitivity, we hypothesize
that CT can reduce these costs by teaching models to seek plausibility with respect
to mutable features, much like we observe in Figure 5.1 in panel (d) compared to
(c). We supplement this analysis with estimates using integrated gradients (IG)
(Sundararajan, Taly, and Yan 2017). To evaluate predictive performance, we use
standard metrics, such as robust accuracy estimated on adversarially perturbed data
using the fast gradient sign method (FGSM) (Goodfellow, Shlens, and Szegedy 2015)
and projected gradient descent (PGD) (Madry et al. 2017).

We make use of nine classification datasets common in the CE/AR literature. Four of
them are synthetic with two classes and different characteristics: linearly separable
Gaussian clusters (LS), overlapping clusters (OL), concentric circles (Clirc), and
interlocking moons (Moon). Next, we have four real-world binary tabular datasets:
Adult (Census data) (Becker and Kohavi 1996), California housing (CH) (Pace and
Barry 1997), Default of Credit Card Clients (Cred) (Yeh 2016), and Give Me Some
Credit (GMSC) (Kaggle 2011). Finally, for convenient illustration, we use the 10-
class MNIST (LeCun 1998).

We run experiments with three gradient-based generators: Generic (Wachter, Mit-
telstadt, and Russell 2017) as a simple baseline; REVISE (Joshi et al. 2019) that
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aims to generate plausible counterfactuals using a surrogate Variational Autoencoder
(VAE); and ECCCo (Altmeyer, Farmanbar, et al. 2024b), targeting faithfulness. In
all cases, we use standard logit cross-entropy loss for yloss(-) and all generators
penalize the distance (¢;-norm) of counterfactuals from their original factual state.
Generic and ECCCo search for counterfactuals directly in the feature space; RE-
VISE traverses the latent space of a variational autoencoder (VAE) fitted to the
training data, so its outputs depend on the quality of the surrogate model. In ad-
dition to the distance penalty, FCCCo uses a penalty that regularizes the energy
associated with the counterfactual, x” (Altmeyer, Farmanbar, et al. 2024b). We
omit the conformal set size penalty proposed in the original paper, since the au-
thors found that faithfulness primarily depends on the energy penalty, freeing us
from one additional hyperparameter.

Our method does not aim to be agnostic to the underlying CE generator and, as
explained in Section 5.3.2, the selection of the CE generator can impact the ex-
plainability of models. To evaluate the specific value of counterfactual training,
we extensively test the method using the three above-mentioned CE generators,
which are characterized by varying complexity and desiderata, and we present the
complete results in the supplementary appendix. Indeed, we observe that ECCCo
outclasses the other two generators as the backbone of CT, generally leading to the
highest reduction in implausibility. This is not surprising; the goals of FCCCo most
closely align with the objectives of CT: maximally faithful explanations should also
be the most useful for feedback. Conversely, we cannot expect the model to learn
much from counterfactual explanations that largely depend on the quality of the
surrogate model that is trained for REVISE. Similarly, Generic is a very simple
baseline that optimizes only for minimal changes of features (measured in the ori-
ginal seminal paper (Wachter, Mittelstadt, and Russell 2017) using median absolute
deviation).

Thus, while counterfactual training can be used with any gradient-based CE gener-
ator to improve the explainability of the resulting model, in Section 5.4.2 we mainly
discuss its effectiveness with ECCCo, the strongest identified generator, allowing
us to optimize the quality of the models. This constitutes our treatment method,
but we still present the complete results for all generators in the supplementary
appendix.

To assess the effects of CT, we investigate the improvements in performance metrics
when using it on top of a weak baseline (BL), a naively (conventionally) trained
multilayer perceptron (MLP), as the control method. As we hold all other things
constant, this is the best way to get a clear picture of the improvement in explainab-
ility that can be directly attributed to CT. It is also consistent with the evaluation
practices in the related literature (Goodfellow, Shlens, and Szegedy 2015; Ross,
Lakkaraju, and Bastani 2024; Teney, Abbasnedjad, and Hengel 2020).

We also note that counterfactual training involves multiple objectives but our prin-
cipal goal is high explainability as in Definition 5.1, while improved robustness is
a welcome byproduct. We neither aim to outperform state-of-the-art approaches
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that target any single one of these objectives, nor do we claim that CT can achieve
this. Specifically, we do not aim to beat JEMs with respect to their generative
capacity, SOTA robust neural networks with respect to (adversarial) robustness,
or (quasi-)Bayesian neural networks with respect to uncertainty quantification. As
we have already explained in Section 5.2, existing literature has shown that all of
these objectives tend to correlate (explaining some of our positive findings), but we
situate counterfactual training squarely in the context of (counterfactual) explainab-
ility and algorithmic recourse, where it tackles an important shortcoming of existing
approaches.

In terms of computing resources, all of our experiments were executed on a high-
performance cluster. We have relied on distributed computing across multiple cent-
ral processing units (CPU); for example, the hyperparameter grid searches were
carried out on 34 CPUs with 2GB memory each. Graphical processing units (GPU)
were not used. All computations were performed in the Julia Programming Lan-
guage (Bezanson et al. 2017); our code base (algorithms and experimental settings)
has been open-sourced on GitHub.? We explain more about the hardware, software,
and reproducibility considerations in the supplementary appendix.

5.4.2. MAIN RESULTS

Our main results for plausibility and actionability for MLP models are summarized
in Table 5.1 that presents counterfactual outcomes grouped by dataset along with
standard errors averaged across bootstrap samples. Asterisks (*) are used when
the bootstrapped 99%-confidence interval of differences in mean outcomes does not
include zero, so the observed effects are statistically significant at the 0.01 level. As
our experimental procedure is (by virtue of the proposed method) relatively complex,
we choose to work at this stringent alpha level to demonstrate the high reliability
of counterfactual training.

The first two columns (IP and IP") show the percentage reduction in implausibility
for our two metrics when using CT on top of the weak baseline. As an example,
consider the first row for LS data: the observed positive values indicate that faithful
counterfactuals are around 26-51% more plausible for models trained with CT, in
line with our observations in panel (b) of Figure 5.1 compared to panel (a).

The third column shows the results for a scenario when mutability constraints are
imposed on the selected features. Again, we are comparing CT to the baseline, so
reductions in the positive direction imply that valid counterfactuals are “cheaper”
(more actionable) when using CT with feature protection. Relating this back to
Figure 5.1, the third column represents the reduction in distances traveled by coun-
terfactuals in panel (d) compared to panel (¢). In the following paragraphs, we
summarize the results for all datasets.

2https://github.com/JuliaTrustworthy AT/Counterfactual Training.jl
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Table 5.1. Key evaluation metrics for valid counterfactual along with bootstrapped
standard errors for all datasets. Plausibility (columns 1-2): percentage
reduction in implausibility for IP and IP*, respectively; Cost / Action-
ability (column 3): percentage reduction in costs when selected features
are protected. Outcomes are aggregated across bootstrap samples (100
rounds) and varying degrees of the energy penalty A, used for ECCCo
at test time. Asterisks (*) indicate that the bootstrapped 99%-confidence

interval of differences in mean outcomes does not include zero.

Data IP (—%) IP" (—%) Cost (—%)
LS 26.26 £0.67" 51.284+ 2.01* 16.41 +0.57*
Circ 58.88 £0.37" 93.84+ 6.70* 42.99 4+ 0.85*
Moon 19.59 + 0.73* 8.00+ 9.44 5.16 4+ 1.00*
OL —1.93+1.12 —27.70+ 14.59 40.86 £ 2.30*
Adult 0.19 £ 1.05 3435+ 5.61* 4.03 +£4.03
CH 10.65 £1.47* 63.06 £ 4.25% 44.23 +1.43*

Cred 10.14 £1.59* 50.35+ 12.26" —18.17 £ 4.40*
GMSC  10.65 +£2.28* 24.75+ 4.84* 66.01 £1.41*
MNIST  6.36 £1.70* —70.31 +£217.60 —35.11 4+ 6.96*

Avg. 15.64 25.29 18.49

PLAUSIBILITY (RQ 5.1)

CT generally produces substantial and statistically significant improvements in plaus-
ibility.

Average reductions in IP range from around 6% for MNIST to almost 60% for Circ.
For the real-world tabular datasets they are around 10% for CH, Cred and GMSC;
for Adult and OL we find no significant impact of CT on IP. The former is subject
to a large proportion of categorical features, which inhibits the generation of large
numbers of valid counterfactuals during training and may therefore explain this
finding.

Reductions in IP* are even more substantial and generally statistically significant,
although the average degree of uncertainty is higher than for IP: reductions range
from around 25% (GMSC) to more than 90% (Circ). The only negative findings
are for OL and MNIST, but they are insignificant. A qualitative inspection of the
counterfactuals in Figure 5.2 suggests recognizable digits for the model trained with
CT (bottom row), unlike the baseline (top row).

ACTIONABILITY (RQ 5.2)

CT tends to improve actionability in the presence of immutable features, but this is
not guaranteed if the assumptions in Proposition 5.1 are violated.
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Figure 5.2. Plausibility: BL (top row) vs CT using the ECCCo generator (bottom
row) counterfactuals for a randomly selected factual from class “0” (in
blue). CT produces more plausible counterfactuals than BL.

Figure 5.3. Actionability: Sample visual explanations (integrated gradients) for all
classes in the MNIST dataset. Top and bottom rows of images show the
results for BL and CT, respectively. Mutability constraints are imposed
on the five top and five bottom rows of pixels. CT is less sensitive to
protected features.

For synthetic datasets, we always protect the first feature; for all real-world tabular
datasets we could identify and protect an age variable; for MNIST, we protect the
five top and five bottom rows of pixels of the full image. Statistically significant
reductions in costs overwhelmingly point in the positive direction reaching up to
around 66% for GMSC data. Only in the case of Cred and MNIST, average costs
increase, most likely because any benefits from protecting features are outweighed
by an increase in costs required for greater plausibility. With respect to MNIST in
particular, the weak baseline is susceptible to cheap adversarial attacks that signi-
ficantly less costly to achieve that plausible counterfactuals. Finally, the findings
for Adult are insignificant.

To further empirically evaluate the feature protection mechanism of CT beyond
linear models covered in Proposition 5.1, we make use of integrated gradients (IG)
(Sundararajan, Taly, and Yan 2017). IG calculates the contribution of each input
feature towards a specific prediction by approximating the integral of the model
output with respect to its input, using a set of samples that linearly interpolate
between a test instance and some baseline instance. This process produces a vector
of real numbers, one per input feature, which informs about the contribution of
each feature to the prediction. The selection of an appropriate baseline is an im-
portant design decision (Sundararajan, Taly, and Yan 2017); to remain consistent
in our evaluations, we use a baseline drawn at random from the uniform distribu-
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tion U(—1,1) for all datasets, which aligns with standard evaluation practices for
IG. As the outputs are not bounded (i.e., they are real numbers), we standardize
the integrated gradients across features to allow for a meaningful comparison of the
results for different models.

Qualitatively, the class-conditional integrated gradients in Figure 5.3 suggest that
CT has the expected effect even for non-linear models: the model trained with CT
(bottom row) is less sensitive (blue) to the five top and five bottom rows of pixels that
were protected. Quantitatively, we observe substantial improvements for seven out
of nine datasets, and inconclusive results for the remaining two datasets. Table 5.2
shows the average sensitivity to protected features measured by standardized integ-
rated gradients for CT and BL along with 95% bootstrap confidence intervals: for
the synthetic datasets, we observe strong reductions in sensitivity to the protected
features for LS, OL and OL, in line with expectations. For the Moon dataset, the
effect of feature protection is less pronounced but still in the expected direction.
We also observe that confidence intervals are in some cases much tighter for models
trained with CT: less noisy estimates for integrated gradients likely indicate that the
model is more regularized and can be expected to behave more consistently across
samples.

For real-world datasets, the sensitivity to the protected age variable is reduced by
approximately a third for Adult, 20% for CH, and more than half for protected pixels
in MNIST, mirroring the qualitative findings in Figure 5.3. In case of Cred, CT fully
prevents the model from considering age as a factor in classification, with sensitivity
reduced to zero. Only for GMSC, we observe negative impacts of CT, which we
believe is due to any or all of the following: a) data assumptions are violated; b)
the impact of other components of the CT objective outweighs expected effects of
feature protection; or ¢) the baseline choice applied consistently to all datasets is
not appropriate for GMSC.

5.4.3. PREDICTIVE PERFORMANCE
ADVERSARIAL ROBUSTNESS (RQ 5.3)

Models trained with CT are much more robust to gradient-based adversarial attacks
than conventionally-trained (weak) baselines.

Test accuracies on clean and adversarially perturbed test data are shown in Fig-
ure 5.4. The perturbation size, ¢ € [0,0.1], increases along the horizontal axis,
where the case of € = 0 corresponds to standard test accuracy for non-perturbed
data. For synthetic datasets, predictive performance is virtually unaffected by per-
turbations for all models; those results are therefore omitted from Figure 5.4 in favor
of better illustrations for the real-world data.

Focusing on the curves for CT and BL in Figure 5.4 for the moment,®> we find
that standard test accuracy (¢ = 0) is largely unaffected by CT, while robustness

3The results for AR and CD are discussed in the context of ablation below.
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Table 5.2. Median sensitivity to protected features measured by standardized in-
tegrated gradients. Square brackets enclose 95% bootstrap confidence

intervals.
Dataset CT BL
LS 0.21 [0.20, 0.22]  30.69 [12.92,629.20]
Circ 6.96 [4.88,20.62] 19.20 [ 6.48,193.92]
Moons  0.54 [0.41, 0.68] 0.66 [ 0.53, 0.92]
Over 0.59 [0.38, 0.79] 24.55 [ 8.31,466.26]
Adult 0.48 [0.41, 0.52] 0.74 [ 0.56, 0.91]
CH 0.04 [0.01, 0.06] 0.05 [ 0.03, 0.09]
Cred 0.00 [0.00, 0.00] 0.20 [ 0.18, 0.25]
GMSC  0.71 [0.58, 0.85] 0.16 [ 0.11, 0.23]
MNIST 0.17 [0.16, 0.17] 0.35 [ 0.33, 0.37]
Adult Cred GMSC MNIST

CH
a
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>
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Figure 5.4. Test accuracies on adversarially perturbed data with varying perturba-
tion sizes for the non-synthetic datasets. Different training objectives
are distinguished by color and shape: (1) BL—the weak baseline; (2)
CT—the full CT objective; (3) AR—a partial CT objective without con-
trastive divergence; (4) CD—a partial CT objective without adversarial
loss. Top and bottom rows show the results for FGSM and PGD (40
steps at step size n = 0.01), respectively.

against both types of attacks—FGSM (top row) and PGD (bottom row)—is greatly
improved: while in some cases robust accuracies for the weak baseline drop to
virtually zero (worse than random guessing) for large enough perturbation sizes,
accuracies of CT models remain remarkably robust, even though robustness is not
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the primary objective of counterfactual training. In the only case where standard
accuracy on unperturbed test data is substantially reduced for CT (GSMC), we
note that robust accuracy decreases particularly fast for the weak baseline as the
perturbation size increases. This seems to indicate that the standard accuracy for
the weak baseline is inflated by sensitivity to meaningless associations in the data.

We also look at the validity of generated counterfactuals, or the proportion of coun-
terfactuals that attain the target class, as presented in Table 5.3. We find that
in many cases CT leads to substantial reductions in average validity, but this ef-
fect does not seem to be strongly influenced by the imposed mutability constraints
(columns 1-2 vs columns 3-4). This result does not surprise us: by design, CT
shrinks the solution space for valid counterfactual explanations, thus making it
“harder” (and yet not “more costly”) to reach validity compared to the baseline
model. As further discussed in the supplementary appendix, this should not be seen
as a shortcoming of the method for a number of reasons: validity rates can be in-
creased with longer searches; costs of found solutions still generally decrease, as we
observe in our experiments; and achieving high validity does not entail that explan-
ations are practical for the recipients (e.g., valid solutions may still be extremely
costly) (Venkatasubramanian and Alfano 2020).

Table 5.3. Average validity of counterfactuals for CT vs BL. First two columns cor-
respond to no mutability constraints imposed on the features; last two
columns involve mutability constraints imposed on the specified features.

Data CT mut. BL mut. CT constr. BL constr.

LS 1.0 1.0 1.0 1.0
Circ 1.0 0.51 0.71 0.48
Moon 1.0 1.0 1.0 0.98
OL 0.86 0.98 0.34 0.56
Adult 0.68 0.99 0.7 0.99
CH 1.0 1.0 1.0 1.0
Cred 0.72 1.0 0.74 1.0
GMSC 0.94 1.0 0.97 1.0
MNIST 1.0 1.0 1.0 1.0
Avg. 0.91 0.94 0.83 0.89

5.4.4. ABLATION AND HYPERPARAMETER SETTINGS

In this subsection, we use ablation studies to investigate how the different com-
ponents of the counterfactual training objective in Equation 5.2 affect outcomes.
Beyond this, we are also interested in understanding how CT depends on various
other hyperparameters. To this end, we present the results from extensive grid
searches run across all synthetic datasets.
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ABLATION (RQ 5.4)

All components of the CT objective affect outcomes, even independently, but the full
objective achieves the most consistent improvements wrt. our goals.

We ablate the effect of both (1) the contrastive divergence component and (2) the
adversarial loss included in the full CT objective in Equation 5.2. In the follow-
ing, we refer to the resulting partial objectives as adversarial robustness (AR) and
contrastive divergence (CD), respectively. We note that AR corresponds to a form
of adversarial training and the CD objective is similar to that of a joint energy-
based model. Therefore, the ablation also serves as a comparison of counterfactual
training to stronger baselines, although we emphasize again that we do not seek to
outperform SOTA methods in the domains of generative or robust machine learning,
focusing CT squarely on models with high explainability and actionability in the
context of algorithmic recourse.

Firstly, we find that both components play an important role in shaping final out-
comes. Both AR and CD can independently improve the plausibility and adversarial
robustness of models.

Concerning plausibility, Figure 5.5 shows the percentage reductions in implausibility
for the partial and full objectives compared to the weak baseline. The results for IP
and IP* are shown in the top and bottom graphs, respectively, and the datasets are
differentiated by color. We find that in the best identified hyperparameter settings,
results for the full objective are predominantly affected by the contrastive divergence
component, but the inclusion of adversarial loss leads to additional improvements for
some datasets (Adult, MNIST). We penalize contrastive divergence twice as strongly
as adversarial loss, which may explain why the former dominates. The outcome for
Adult, in particular, demonstrates the benefit of including both components: as
noted earlier, the large proportion of categorical features in this dataset seems to
inhibit the generation of valid counterfactuals, which in turn appears to diminish
the effect of the contrastive divergence component.

Looking at AR alone, we find that it produces mixed results for IP, with strong
positive results nonetheless dominating overall, reflecting previous findings from
the related literature. In particular, for real-world tabular datasets, adversarial
robustness seems to substantially benefit plausibility. In these cases, the inclusion of
the AR component in the full objective also helps to substantially improve outcomes
in relation to the partial CD objective: improvements in plausibility for the Adult
and MNIST datasets are notably higher for full CT. In some cases—most notably
GMSC and Cred—the full CT objective does not outperform the partial objectives,
but still achieves the highest levels of adversarial robustness (Figure 5.4).

Zooming in on adversarial robustness, we find that the full CT objective consistently
outperforms the partial objectives, which individually yield improvements. Consist-
ent with the existing literature on JEMs (Grathwohl et al. 2020), CD yields sub-
stantially more robust models than the weak baseline at varying perturbation sizes
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(Figure 5.4). Similarly, AR yields consistent improvements in robustness, as expec-
ted. Still, we observe that in cases where either CD or AR show signs of degrading
robust accuracy at higher perturbation sizes, the full CT objective maintains robust-
ness. Much like in the context of plausibility, CT benefits from both components,
highlighting the effectiveness of our approach to reusing nascent counterfactuals as
AEs.

In summary, we find that the full CT objective strikes a balance between both
components, thereby leading to the most consistent improvements with respect to
plausibility and adversarial robustness.
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Figure 5.5. Percentage reductions in implausibility for the partial (AR, CD) and
full (CT) objectives compared to the weak baseline. The results for IP
and IP" are shown in the top and bottom graphs, respectively, and the
datasets are differentiated by color.

HYPERPARAMETER SETTINGS (RQ 5.5)

CT is quite sensitive to the choice of a CE generator and its hyperparameters but
(1) we observe manageable patterns, and (2) we can usually identify settings that
improve either plausibility or actionability, and typically both of them at the same
time.

We evaluate the impacts of three types of hyperparameters on CT. In the following,
we focus on the highlights and make the full results available in the supplementary
appendix.

Firstly, we find that optimal results are generally obtained when using ECCCo to
generate counterfactuals. Conversely, using a generator that may inhibit faithfulness
(REVISE), regularly yields smaller improvements in plausibility and is more likely to
even increase implausibility. The results of the grid search for REVISE also exhibit
higher variability than the results for ECCCo and Generic. As argued above, this
finding confirms our intuition that maximally faithful explanations are most suitable
for counterfactual training.
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Concerning hyperparameters that guide the gradient-based counterfactual search,
we find that increasing T', the maximum number of steps, generally yields better out-
comes because more CEs can mature. Relatedly, we also find that the effectiveness
and stability of CT is positively associated with the total number of counterfactuals
generated during each training epoch. The impact of 7, the decision threshold, is
more difficult to predict. On “harder” datasets it may be difficult to satisfy high 7
for any given sample (i.e., also factuals) and so increasing this threshold does not
seem to correlate with better outcomes. In fact, 7 = 0.5 generally leads to optimal
results as it is associated with high proportions of mature counterfactuals. This is
likely because the special case of 7 = 0.5 corresponds to equal class probabilities, so
a counterfactual is considered mature when the logit for the target class is higher
than the logits for all other classes.

Secondly, the strength of the energy regularization, A, is highly impactful and
should be set sufficiently high to avoid common problems associated with exploding
gradients. The sensitivity with respect to Ay, and A,4, is much less evident. While
high values of A,., may increase the variability in outcomes when combined with
high values of Ay, or A4, this effect is not particularly pronounced. These results
mirror our observations from the ablation studies and lend further weight to the
argument that CT benefits from both components.

Finally, we also observe desired improvements when CT was combined with con-
ventional training and employed only for the final 50% of epochs of the complete
training process. Put differently, CT can improve the explainability of models in a
post-hoc, fine-tuning manner.

5.5. DISCUSSION

As our results indicate, counterfactual training achieves its objective of producing
models that are more explainable. Nonetheless, these advantages come with certain
limitations.

Immutable features may have prozies. We propose a method to modify the sensitivity
of a model to certain features, and thus increase the actionability of the generated
CEs. However, it requires that model owners define the mutability constraints for
(all) features considered by the model. Even if all immutable features are protected,
there may exist proxies that are theoretically mutable (and hence should not be
protected) but preserve enough information about the principals to hinder these
protections. Delineating actionability is a major open challenge in the AR literature
(see, e.g., (Venkatasubramanian and Alfano 2020)) impacting the capacity of CT to
fulfill its intended goal.

Interventions on features may have implications for fairness. Modifying the sens-
itivity of a model to certain features may also have implications for the fair and
equitable treatment of decision subjects. Model owners could misuse this solution
by enforcing explanations based on features that are more difficult to modify by
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some (group of) decision subjects. For example, consider the Adult dataset used in
our experiments, where workclass or education may be more difficult to change for
underprivileged groups. When applied irresponsibly, CT could result in an unfairly
assigned burden of recourse (Sharma, Henderson, and Ghosh 2020), threatening
the equality of opportunity in the system (Bell et al. 2024). Nonetheless, these
phenomena are not specific to CT.

Plausibility is costly. As noted before, more plausible counterfactuals are inevitably
more costly (Altmeyer, Farmanbar, et al. 2024b). CT improves plausibility and
robustness, but this can negatively affect average costs and validity whenever cheap,
implausible, and adversarial explanations are removed from the solution space.

CT increases training times. Just like contrastive and robust learning, CT is more
resource-intensive than conventional regimes. Three factors mitigate this effect: (1)
CT yields itself to parallel execution; (2) it amortizes the cost of CEs for the training
samples; and (3) our preliminary findings suggest that it can be used to fine-tune
conventionally-trained models.

We also highlight three key directions for future research. Firstly, it is an interesting
challenge to extend CT beyond classification settings. Our formulation relies on the
distinction between target and non-target classes, requiring the output space to be
discrete. Thus, it does not apply to ML tasks where the change in outcome cannot be
readily discretized. Classification remains the focus of CE and algorithmic recourse
research; other settings have attracted some interest (e.g., regression (Spooner et al.
2021)), but there is little consensus on how to extend the notion of CEs.

Secondly, our analysis covers CE generators with different characteristics, but it
is interesting to extend it to more algorithms, including ones that do not rely on
computationally costly gradient-based optimization. This should reduce training
costs while possibly preserving the benefits of CT.

Finally, we believe that it is possible to considerably improve hyperparameter selec-
tion procedures. Our method benefits from the tuning of certain key hyperparamet-
ers but we have relied exclusively on grid searches. Future work on CT could benefit
from more sophisticated approaches. Notably, CT is iterative, which makes meth-
ods such as Bayesian or gradient-based optimization applicable (see, e.g., (Bischl et
al. 2023)).

5.6. CONCLUSION

State-of-the-art machine learning models are prone to learning complex representa-
tions that cannot be interpreted by humans. Existing work on counterfactual explan-
ations has largely focused on designing tools to generate plausible and actionable
explanations for any model. In this work, we instead hold models accountable for
delivering such explanations. We introduce counterfactual training: a novel training
regime that integrates recent advances in contrastive learning, adversarial robust-
ness, and CE to incentivize highly explainable models. Through theoretical results
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and extensive experiments, we demonstrate that CT satisfies this goal while pro-
moting adversarial robustness of models. Explanations generated from CT-based
models are both more plausible (compliant with the underlying data-generating
process) and more actionable (compliant with user-specified mutability constraints),
and thus meaningful to recipients. In turn, our work highlights the value of simul-
taneously improving models and their explanations.
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POSITION: STOP MAKING
UNSCIENTIFIC AGI
PERFORMANCE CLAIMS

Developments in the field of Artificial Intelligence (AI), and particularly large lan-
guage models (LLMs), have created a ‘perfect storm’ for observing ‘sparks’ of Artifi-
cial General Intelligence (AGI) that are spurious. Like simpler models, LLMs distill
meaningful representations in their latent embeddings that have been shown to cor-
relate with external variables. Nonetheless, the correlation of such representations
has often been linked to human-like intelligence in the latter but not the former.
We probe models of varying complexity including random projections, matrix de-
compositions, deep autoencoders and transformers: all of them successfully distill
information that can be used to predict latent or external variables and yet none of
them have previously been linked to AGI. We argue and empirically demonstrate
that the finding of meaningful patterns in latent spaces of models cannot be seen as
evidence in favor of AGI. Additionally, we review literature from the social sciences
that shows that humans are prone to seek such patterns and anthropomorphize. We
conclude that both the methodological setup and common public image of Al are
ideal for the misinterpretation that correlations between model representations and
some variables of interest are ‘caused’ by the model’s understanding of underlying
‘ground truth’ relationships. We, therefore, call for the academic community to ex-
ercise extra caution, and to be keenly aware of principles of academic integrity, in
interpreting and communicating about Al research outcomes.
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This chapter was published in Proceedings of the 41st International Conference
on Machine Learning by Patrick Altmeyer, Andrew M. Demetriou, Antony
Bartlett, Cynthia C. S. Liem (2024). See Chapter 1.8 for additional publica-
tion details.

6.1. INTRODUCTION

In 1942, when anti-intellectualism was rising and the integrity of science was under
attack, Robert K. Merton formulated four ‘institutional imperatives’ as comprising
the ethos of modern science: wuniversalism, meaning that the acceptance or rejec-
tion of claims entering the lists of science should not depend on personal or social
attributes of the person bringing in these claims; “communism” [sic], meaning that
there should be common ownership of scientific findings and one should commu-
nicate findings, rather than keeping them secret; disinterestedness, meaning that
scientific integrity is upheld by not having self-interested motivations, and organ-
ized skepticism, meaning that judgment on the scientific contribution should be
suspended until detached scrutiny is performed, according to institutionally accep-
ted criteria (Merton et al. 1942). While the Mertonian norms may not formally
be known to academics today, they still are implicitly being subscribed to in many
ways in which academia has organized academic scrutiny; e.g., through the adoption
of double-blind peer reviewing, and in motivations behind open science reforms.

At the same time, in the way in which academic research is disseminated in the
AT and machine learning fields today, major shifts are happening. Where these re-
search fields have actively adopted early sharing of preprints and code, the volume
of publishable work has exploded to a degree that one cannot reasonably keep up
with broad state-of-the-art, and social media influencers start playing a role in art-
icle discovery and citeability (Weissburg et al. 2024). Furthermore, because of
major commercial stakes with regard to Al and machine learning technology, and
e.g. following the enthusiastic societal uptake of products employing LLMs, such as
ChatGPT, the pressure to beat competitors as fast as possible is only increasing,
and strong eagerness can be observed in many domains to ‘do something with AT’
in order to innovate and remain current.

Where Al used to be a computational modeling tool to better understand human
cognition (Rooij et al. 2023), the recent interest in AI and LLMs has been turn-
ing into one in which Al is seen as a tool that can mimic, surpass and potentially
replace human intelligence. In this, the achievement of Artificial General Intelli-
gence (AGI) has become a grand challenge, and in some cases, an explicit business
goal. The definition of AGI itself is not as clear-cut or consistent; loosely, it is a
phenomenon contrasting with ‘narrow AI’ systems, that were trained for specific
tasks (Goertzel 2014). In practice, to demonstrate that the achievement of AGI
may be getting closer, researchers have sought to show that AI models generalize
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to different (and possibly unseen) tasks, with little human intervention, or show
performance considered ‘surprising’ to humans.

For example, Google DeepMind claimed their AlphaGeometry model (Trinh et al.
2024) reached a ‘milestone’ towards AGI. This model has the ability to solve complex
geometry problems, allegedly without the need for human demonstrations during
training. However, work such as this had been initially introduced in the 1950s (Zenil
2024): without the use of an LLM, logical inference systems proved 100% accurate
in proving all the theorems of Euclidean Geometry, due to geometry being an ax-
iomatically closed system. Therefore, while DeepMind created a powerfully fast
geometry-solving machine, it is still far from AGI.

Generally, in the popularity of ChatGPT and the integration of generative Al in pro-
ductivity tools (e.g. through Microsoft’s Copilot integrations in GitHub and Office
applications), one also can wonder whether the promise of Al is more in computation-
ally achieving general intelligence, or rather in the engineering of general-purpose
tools!. Regardless, stakes and interests are high, e.g. with ChatGPT clearing nearly
$1 billion in months of its release?.

When combining massive financial incentives with the presence of a challenging and
difficult-to-understand technology, that aims towards human-like problem-solving
and communication abilities, a situation arises that is fertile for the misinterpret-
ation of spurious cues as hints towards AGI, or other qualities like sentience® and
consciousness. Al technology only becomes more difficult to understand as academic
publishing in the space largely favors performance, generalization, quantitative evid-
ence, efficiency, building on past work, and novelty (Birhane et al. 2022). As such,
works that make it into top-tier venues tend to propose heavier and more complic-
ated technical takes on tasks that (in the push towards generalizability) get more
vague, while the scaling-up of data makes traceability of possible memorization
harder. In a submission-overloaded reality, researchers may further get incentiv-
ized to oversell and overstate achievement claims. At the same time, while currently
popular in literature, inherent complexity and opaqueness in technical solutions may
fundamentally be unwise to pursue in high-stakes applications (Rudin 2019).

Noticing these trends, we as the authors of this article are concerned. We feel
that the current culture of racing toward Big Outcome Statements in industry and
academic publishing too much disincentivizes efforts toward more thorough and nu-
anced actual problem understanding. At the same time, as the outside world is so
eager to adopt Al technology, (too) strong claims make for good sales pitches, but a
question is whether there is indeed sufficient evidence for these claims. With success-
ful AGI outcomes needing to look human-like, this also directly plays into risks of
anthropomorphizing (the attribution of human-like qualities to non-human objects)

LA Swiss army knife is an effective general-purpose tool, without people wondering whether it
exhibits intelligence.

2https://www.bloomberg.com/news /articles/2023-08-30/openai-nears-1-billion-of-annual-sales-
as-chatgpt-takes-off

Shttps://www.scientificamerican.com/article/google-engineer-claims-ai-chatbot-is-sentient-why-
that-matters/
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and confirmation bias (the seeking-out and/or biased interpretation of evidence in
support of one’s beliefs). In other words, it is very tempting to claim surprising
human-like achievements of Al, and as humans, we are very prone to genuinely be-
lieving this. We therefore urge our fellow researchers to stop making unscientific
AGI performance claims.

To strengthen our argument, in this paper, we first present related work in Sec-
tion 6.2. We then consider a recently viral work (Gurnee and Tegmark 2023a) in
which claims about the learning of world models by LLMs were made. In Section 6.3,
we present several experiments that may invite similar claims on models yielding
more intelligent outcomes than would have been expected—while at the same time
indicating how we feel these claims should not be made. Furthermore, we present
a review of social science findings in Section 6.4 that underline how prone humans
are to being enticed by patterns that are not really there. Combining this with
the way in which media portrayal of Al has tended towards science-fiction imagery
of mankind-threatening robots, we argue that the current Al culture is a perfect
storm for making and believing inflated claims, and call upon our fellow academics
to be extra mindful and scrutinous about this. Finally, in Section 6.5, we propose
specific structural and cultural changes to improve the current situation. Section 6.6
concludes.

6.2. RELATED WORK

In this work, we question the practice of using outcomes from mechanistic inter-
pretability to support AGI claims. This is not to be seen as criticism toward the
underlying methodologies in isolation, but rather in the context of current pub-
lishing practices that we repeatedly challenge throughout this work. Many closely
related works are free of any grandiose conclusions and instead highlight the be-
nefits of mechanistic interpretability that we also highlight here (Nanda, Lee, and
Wattenberg 2023; Gurnee et al. 2023; Li et al. 2022).

Another related subfield investigates the capacity of LLMs to reason causally. Here,
too, there is an opportunity to over-interpret the finding of causal information as
causal understanding. Recent work has shown, for example, that LLMs can indeed
correctly predict causal relationships and this may have practical use cases (Kici-
man et al. 2023). But despite the potential utility, the authors also demonstrate
that this capacity can be partially explained by memorization, rather than an ac-
tual understanding of causal relationships. Similarly, Zecevié et al. (2023) provide
evidence indicating that current LLMs “may talk causality but are not causal”.

Two other recent works are related to this work and align well with the position we
present here. Schaeffer, Miranda, and Koyejo (2024) demonstrate that the apparent
emergent abilities of large language models may be driven by a choice of evaluation
metrics, rather than some fundamental property that is intrinsic to this family of
models. Their work highlights the need for rigorous testing and benchmarking of
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LLMs, which we also point to in this work, albeit in a slightly different method-
ological context. Kloft et al. (2024) provide experimental evidence demonstrating
that people have heightened expectations and a biased, positive view of Al. The
authors run a user study of human-Al interaction, in which participants performed
better at a given task when they (wrongly) thought they were aided by a positively
described Al. This placebo effect was found to be robust to negative descriptions of
ATl Positive bias towards Al may exacerbate other factors that drive people to make
unscientific claims about the current state of AI, which we discuss in Section 6.4.

6.3. SURPRISING PATTERNS IN LATENT SPACES?

In 2023, a research article went viral on the X* platform (Gurnee and Tegmark
2023b). Through linear probing experiments, the claim was made that LLMs learned
literal maps of the world. As such, they were considered to be more than ‘stochastic
parrots’ (Bender et al. 2021) that can only correlate and mimic existing patterns
from data, but not truly understand it. While the manuscript immediately received
public criticism (Marcus 2023), and the revised, current version is more careful with
regard to its claims (Gurnee and Tegmark 2023a), reactions on X seemed to largely
exhibit excitement and surprise at the authors’ findings. However, in this section,
through various simple examples, we make the point that observing patterns in
latent spaces should not be a surprising revelation. After starting with a playful
example of how easy it is to ‘observe’ a world model, we build up a larger example
focusing on key economic indicators and central bank communications.

. Spain

l Italy

I Portugal

l Netherlands
I:l Croatia

I:l Belgium

D England

I Brazil

. France

. Argentina

Figure 6.1. Predicted coordinate values (out-of-sample) from a linear probe on final-
layer activations of an untrained neural network.

4https://twitter.com/wesgh2/status/17095515165779027827s=20
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6.3.1. ARE NEURAL NETWORKS BORN WITH WORLD MODELS?

Gurnee and Tegmark (2023a) extract and visualize the alleged geographical world
model by training linear regression probes on internal activations in LLMs (including
Llama-2) for the names of places, to predict geographical coordinates associated
with these places. Now, the Llama-2 model has ingested huge amounts of publicly
available data from the internet, including Wikipedia dumps from the June-August
2022 period (Touvron et al. 2023). It is therefore highly likely that the training
data contains geographical coordinates, either directly or indirectly. At the very
least, we should expect that the model has seen features during training that are
highly correlated with geographical coordinates. The model itself is essentially a
very large latent space to which all features are randomly projected in the very first
instance before being passed through a series of layers which are gradually trained
for downstream tasks.

In our first example, we simulate this scenario, stopping short of training the model.
In particular, we take the world place.csv that was used in Gurnee and Tegmark
(2023a), which maps locations/areas to their latitude and longitude. For each place,
it also indicates the corresponding country. From this, we take the subset that
contains countries that are currently part of the top 10 FIFA world ranking, and
assign the current rank to each country (i.e., Argentina gets 1, France gets 2, ..).
To ensure that the training data only involves a noisy version of the coordinates, we
transform the longitude and latitude data as follows: p - coord + (1 — p) - € where
p=0.5and e ~ N(0,5).

Next, we encode all features except the FIFA world rank indicator as continuous
variables: X("*™) where n is the number of samples and m is the number of resulting
features. Additionally, we add a large number of random features to X to simulate
the fact that not all features ingested by Llama-2 are necessarily correlated with
geographical coordinates. Let d denote the final number of features, i.e. d =m+ k
where k is the number of random features.

We then initialize a small neural network, considered a projector, mapping from
X to a single hidden layer with h < d hidden units and sigmoid activation, and
from there, to a lower-dimensional output space. Without performing any training
on the projector, we simply compute a forward pass of X and retrieve activations
Z("*h)  Next, we perform the linear probe on a subset of Z through Ridge regression:
W = (Z; inZirain + N)(Z,.;ncoord) "1, where coord is the (n x 2) matrix containing
the longitude and latitude for each sample. A hold-out set is reserved for testing,
on which we compute predicted coordinates for each sample as coord = Z,, W and

plot these on a world map (Figure 6.1).

While the fit certainly is not perfect, the results do indicate that the random pro-
jection contains representations that are useful for the task at hand. Thus, this
simple example illustrates that meaningful target representations should be recov-
erable from a sufficiently large latent space, given the projection of a small number
of highly correlated features. Similarly, Alain and Bengio (2016) observe that even
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before training a convolutional neural network on MNIST data, the layer-wise activ-
ations can already be used to perform binary classification. In fact, it is well-known
that random projections can be used for prediction tasks (Dasgupta 2013).

This first experiment—and indeed the practice of probing LLMs that have seen vast
amounts of data—can be seen as a form of inverse problem and common caveats
such as non-uniqueness and instability apply (Haltmeier and Nguyen 2023). Regu-
larization can help mitigate these caveats (OM 2001), but we confess that we did
not carefully consider the parameter choice for A, nor has this been carefully studied
in the related literature to the best of our knowledge.

6.3.2. PCA AS A YIELD CURVE INTERPRETER

We now move to a concrete application domain: Economics. Here, the yield curve,
plotting the yields of bonds against their maturities, is a popular tool for investors
and economists to gauge the health of the economy. The yield curve’s slope is often
used as a predictor of future economic activity: a steep yield curve is associated
with a growing economy, while a flat or inverted yield curve is associated with a
contracting economy. To leverage this information in downstream modelling tasks,
economists regularly use PCA to extract a low-dimensional projection of the yield
curve that captures relevant variation in the data (e.g. Berardi and Plazzi (2022),
Kumar (2022) and Crump and Gospodinov (n.d.)).

To understand the nature of this low-dimensional projection, we collect daily Treas-
ury par yield curve rates at all available maturities from the US Department of the
Treasury. Computing principal components involves decomposing the matrix of all
yields r into a product of its singular vectors and values: r = UXV’. Let us simply
refer to U, ¥ and V' as latent embeddings of the yield curve.

The upper panel in Figure 6.2 shows the first two principal components of the yield
curves of US Treasury bonds over time. Vertical stalks indicate key dates related to
the Global Financial Crisis (GFC). During its onset, on 27 February 2007, financial
markets were in turmoil following a warning from the Federal Reserve (Fed) that
the US economy was at risk of a recession. The Fed later reacted to mounting eco-
nomic pressures by gradually reducing short-term interest rates to unprecedented
lows. Consequently, the average level of yields decreased and the curve steepened.
In Figure 6.2, we can observe that the first two principal components appear to
capture this level shift and steepening, respectively. In fact, they are strongly posit-
ively correlated with the actual observed first two moments of the yield curve (lower
panel of Figure 6.2).

Again, it should not be surprising that these latent embeddings are meaningful: by
construction, principal components are orthogonal linear combinations of the data
itself, each of which explains most of the residual variance after controlling for the
effect of all previous components.
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Figure 6.2. Top chart: The first two principal components of US Treasury yields
over time at daily frequency. Bottom chart: Observed average level and
10yr-3mo spread of the yield curve. Vertical stalks roughly indicate the
onset (|GFC) and the beginning of the aftermath (GFC|) of the Global
Financial Crisis.

6.3.3. LLMS FOR ECONOMIC SENTIMENT PREDICTION

So far, we considered simple linear data transformations. One might argue that this
does not really involve latent embeddings in the way they are typically thought of in
the context of deep learning. In the appendix, we present an additional experiment
in which we more explicitly seek neural network-based representations that will be
useful for downstream tasks. Here, we continue with an example in which LLMs
may be used for economic sentiment prediction.

Closely following the approach in Gurnee and Tegmark (2023a), we apply it to the
novel Trillion Dollar Words (Shah, Paturi, and Chava 2023) financial dataset, con-
taining a curated selection of sentences formulated and communicated to the public
by the Fed through speeches, meeting minutes and press conferences. (Shah, Paturi,
and Chava 2023) use this dataset to train a set of LLMs and rule-based models to
classify sentences as either ‘dovish’, ‘hawkish’ or ‘neutral’. In the context of central
banking, ‘hawkishness’ is typically associated with tight monetary policy: in other
words, a ‘hawkish’ stance on policy favors high interest rates to limit the supply of
money and thereby control inflation. The authors first manually annotate a sub-
sample of the available data and then fine-tune various models for the classification
task. Their model of choice, FOMC-RoBERTu (a fine-tuned version of RoBERTa
(Liu et al. 2019)), achieves an F} score of around > 0.7 on the test data. To il-
lustrate the potential usefulness of the learned classifier, they use predicted labels
for the entire dataset to compute an ad-hoc, count-based measure of ‘hawkishness’.
This measure is shown to correlate with key economic indicators in the expected
direction: when inflationary pressures rise, the measured level of ‘hawkishness’ in-
creases, as central bankers react by raising interest rates to bring inflation back to
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target.

6.3.3.1. LINEAR PROBES

We now use linear probes to assess if the fine-tuned model has learned associative
patterns between central bank communications and key economic indicators. There-
fore, we further pre-process the data provided by Shah, Paturi, and Chava (2023)
and use their proposed model to compute activations of the hidden state, on the
first entity token for each layer. We have made these available and easily accessible
through a small Julia package: TrillionDollarWords.jl.

For each layer, we compute linear probes through Ridge regression on two inflation
indicators (the Consumer Price Index (CPI) and the Producer Price Index (PPI))
and US Treasury yields at different levels of maturity. To allow comparison with
Shah, Paturi, and Chava (2023), we let yields enter the regressions in levels. To meas-
ure price inflation we use percentage changes proxied by log differences. To mitigate
issues related to over-parameterization, we follow the recommendation in Alain and
Bengio (2016) to first reduce the dimensionality of the computed activations. In
particular, we restrict our linear probes to the first 128 principal components of the
embeddings of each layer. To account for stochasticity, we use an expanding window
scheme with 5 folds for each indicator and layer. To avoid look-ahead bias, PCA is
always computed on the sub-samples used for training the probe.

Figure 6.3 shows the out-of-sample root mean squared error (RMSE) for the linear
probe, plotted against FOMC-RoBERTa’s n-th layer. The values correspond to
averages across cross-validation folds. Consistent with related work (Alain and
Bengio 2016; Gurnee and Tegmark 2023a), we observe that model performance
tends to be higher for layers near the end of the transformer model. Curiously, for
yields at longer maturities, we find that performance eventually deteriorates for the
very final layers. We do not observe this for the training data, so we attribute this
to overfitting.

It should be noted that performance improvements are generally of small magnitude.
Still, the overall qualitative findings are in line with expectations. Similarly, we
also observe that these layers tend to produce predictions that are more positively
correlated with the outcome of interest and achieve higher mean directional accuracy
(MDA). Upon visual inspection of the predicted values, we conclude the primary
source of prediction errors is low overall sensitivity, meaning that the magnitude of
predictions is generally too small.

To better assess the predictive power of our probes, we compare their predictions
to those made by simple autoregressive models. For each layer, indicator and cross-
validation fold, we first determine the optimal lag length based on the training data
using the Bayes Information Criterium with a maximal lag length of 10. These
are not state-of-the-art forecasting models, but they serve as a reasonable baseline.
For most indicators, probe predictions outperform the baseline in terms of average
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performance measures. After accounting for variation across folds, however, we gen-
erally conclude that the probes neither significantly outperform nor underperform.
Detailed results, in which we also perform more explicit statistical testing, can be
found in the appendix.

cPI PRI UST (1 Mo) UST (1 Yr) UST (10 Y1)
e ] e 0 s -
430041075 e e 0 00168 . 0.683 . . O%TT o oot 0142079 4 %
. ot ] ! 0326 {* . o
» 4.280x100° ~ N * . N .o o > 0 014154 *° @
E 500164 % E “w ¢ o 32 3254 * E .
S 4.260x10-2 . g . S 06827 . = e S e Sos0{% S .
) o o o 4 Cd
4.240x102 e 0.01634° b Pl 0324 oo o
Ko X 0681 0.1405 A
; 0.323 . .
4.220x107 - — - — - — - - : °,
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Figure 6.3. Out-of-sample root mean squared error (RMSE) for the linear probe plot-
ted against FOMC-RoBERTa’s n-th layer for different indicators. The
values correspond to averages computed across cross-validation folds,
where we have used an expanding window approach to split the time
series. As expected, model performance tends to be higher (average
prediction errors are lower) for layers near the end of the transformer
model.
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Figure 6.4. Probe predictions for sentences about inflation of prices (IP), deflation
of prices (DP), inflation of birds (IB) and deflation of birds (DB). The
vertical axis shows predicted inflation levels subtracted by the average
predicted value of the probe for random noise.
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6.3.3.2. SPARKS OF ECONOMIC UNDERSTANDING?

Even though FOMC-RoBERTa, which is substantially smaller than the models
tested in Gurnee and Tegmark (2023a), was not explicitly trained to uncover as-
sociations between central bank communications and the level of consumer prices,
it appears that the model has distilled representations that can be used to predict
inflation (although they certainly will not win any forecasting competitions). So,
have we uncovered further evidence that LLMs “aren’t mere stochastic parrots”?
Has FOMC-RoBERTu developed an intrinsic ‘understanding’ of the economy just
by ‘reading’ central bank communications? Thus, can economists readily adopt
FOMC-RoBERTa as a domain-relevant tool?

We are having a very hard time believing that the answer to either of these questions
is ‘yes’ To argue our case, we will now produce a counter-example demonstrating
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that, if anything, these findings are very much in line with the parrot metaphor.
The counter-example is based on the following premise: if the results from the
linear probe truly were indicative of some intrinsic ‘understanding’ of the economy,
then the probe should not be sensitive to random sentences that are most definitely
not related to consumer prices.

To test this, we select the best-performing probe trained on the final-layer activa-
tions for each indicator. We then make up sentences that fall into one of these four
categories: Inflation/Prices (IP)—sentences about price inflation, Deflation/Prices
(DP)—sentences about price deflation, Inflation/Birds (IB)—sentences about infla-
tion in the number of birds and Deflation/Birds (DB)—sentences about deflation
in the number of birds. A sensible sentence for category DP, for example, could be:
“It is essential to bring inflation back to target to avoid drifting into deflation territ-
ory.”. Analogically, we could construct the following sentence for the DB category:
“It is essential to bring the numbers of doves back to target to avoid drifting into
dovelation territory.”. While domain knowledge suggests that the former is related
to actual inflation outcomes, the latter is, of course, completely independent of the
level of consumer prices. Detailed information about the made-up sentences can be
found in the appendix.

In light of the encouraging results in Figure 6.3, we should expect the probe to pre-
dict higher levels of inflation for activations for sentences in the IP category, than for
sentences in the DP category. If this was indicative of true intrinsic ‘understanding’
as opposed to memorization, we would not expect to see any significant difference
in predicted inflation levels for sentences about birds, independent of whether their
numbers are increasing. More specifically, we would not expect the probe to predict
values for sentences about birds that are substantially different from the values it
can be expected to predict for actual white noise.

To get to this last point, we also generate many probe predictions for samples of noise.
Let f : A* Y denote the linear probe that maps from the k-dimensional space
spanned by k first principal components of the final-layer activations to the output
variable of interest (CPI growth in this case). Then we sample ; ~ N (0, 1#*k)) for
i € [1,1000] and compute the sample average. We repeat this process 10000 times
and compute the median-of-means to get an estimate for E[f(¢)] = E[yle], that is
the predicted value of the probe conditional on random noise.

Figure 6.4 shows the results of this small test: it shows predicted inflation levels
subtracted by E[f(¢)]. The median linear probe predictions for sentences about
inflation and deflation are indeed substantially higher and lower, respectively than
for random noise. Unfortunately, the same is true for sentences about the inflation
and deflation in the number of birds, albeit to a somewhat lower degree. This finding
holds for both inflation indicators and to a lesser degree also for yields at different
maturities, at least qualitatively.
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6.4. HUMAN PRONENESS TO OVER-INTERPRETATION

Linear probes and related tools from mechanistic interpretability were proposed in
the context of monitoring models and diagnosing potential problems (Alain and
Bengio 2016). Favorable outcomes from probes merely indicate that the model “has
learned information relevant for the property [of interest]” (Belinkov 2021). Our
examples demonstrate that this is achievable even for small models, while these
have certainly not developed intrinsic’understanding” of the world. Thus, we argue
that more conservative and rigorous tests for emerging capabilities of AT model are
needed.

Generally, humans are prone to seek patterns everywhere. Meaningful patterns have
proven useful in helping us make sense of our past, navigate our present and predict
the future. Although this tendency to perceive patterns likely leads to evolutionary
benefits even when the perceived patterns are false (Foster and Kokko 2009), psy-
chology has revealed a host of situations in which the ability to perceive patterns
severely misfires, leading to irrational beliefs in the power of superstitions (Foster
and Kokko 2009), conspiracy theories (Van Prooijen, Douglas, and De Inocencio
2018), the paranormal (Miiller and Hartmann 2023), gambler’s fallacies (Ladouceur,
Paquet, and Dubé 1996) and ‘pseudo-profound bullshit’ (Walker et al. 2019).

We argue herein that Al research and development is a perfect storm that encourages
our human biases to perceive spurious sparks of general intelligence in Al systems.
When an AT system extracts patterns in the corpus not originally (thought to be)
perceived during training, we can easily be misled to perceive and interpret this as
the Al system having greater cognitive capabilities. We further elaborate on this
by highlighting the risks of finding spurious patterns, and reviewing social science
knowledge on the tendency of humans to anthropomorphize and have cognitive
bias.

6.4.1. SPURIOUS RELATIONSHIPS

In statistics, misleading patterns are often referred to as spurious relationships: as-
sociations, often quantitatively assessed, between two or more variables that are not
causally related to each other. Although the formal definition of spuriousness var-
ies somewhat (Haig 2003), it distinctly implies that the observation of correlations
does not necessarily imply causation. Quantitative data often show non-causal as-
sociations (as humorously demonstrated on the Spurious Correlations website), and
as adept as humans are at recognizing patterns, we typically have a much harder
time discerning spurious relationships from causal ones.

A major contributor is that humans struggle to tell the difference between random
and non-random sequences (Falk and Konold 1997), and to generate sequences that
appear random (Ladouceur, Paquet, and Dubé 1996). A common issue is a lack
of expectation that randomness that hints towards a causal relationship, such as
correlations, will still appear at random. This leads even those trained in statistics
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and probability to perceive illusory correlations, correlations of inflated magnitude
(see Nickerson (1998)), or causal relationships in data that is randomly generated
(Zgraggen et al. 2018).

6.4.2. ANTHROPOMORPHISM

Research on anthropomorphism has repeatedly shown the human tendency to attrib-
ute human-like characteristics to non-human agents and/or objects. These might
include the weather and other natural forces, pets and other animals, gadgets and
other pieces of technology (Epley, Waytz, and Cacioppo 2007). Formally studied
as early as 1944, Heider and Simmel (1944) observed that humans can correctly in-
terpret a narrative whose characters are abstract 2D shapes, but also that humans
interpreted random movements of these shapes as having a human-like narrative.
Relevant to AT and the degree to which it resembles AGI, anthropomorphizing may
occur independently of whether such judgments are accurate, and as a matter of
degree: at the weaker end, one may employ anthropomorphism as a metaphorical
way of thinking or explaining, and at the stronger end one may attribute human
emotions, cognition, and intelligence to Al systems. As Epley, Waytz, and Cacioppo
(2007) note, literature has shown that even weak metaphorical anthropomorphism
may affect how humans behave towards non-human agents.

Modern anthropomorphism theory suggests there are three key components, one of
which is a cognitive feature, and two of which are motivations. The first involves the
easy availability of our experiences as heuristics that can be used to explain external
phenomena: “..knowledge about humans in general, or self-knowledge more specific-
ally, functions as the known and often readily accessible base for induction about
the properties of unknown agents” (p.866 in Epley, Waytz, and Cacioppo (2007)).
Thus, our experience as humans is an always-readily-available template to interpret
the world, including non-human agent behaviors. This may be more so when the
behaviors of that agent are made to resemble humans, which can be a benefit to
the second key component of the theory: a motivational state to anthropomorph-
ize among individuals experiencing loneliness, social isolation, or otherwise seeking
social connection (Epley, Waytz, and Cacioppo 2007; Waytz, Epley, and Cacioppo
2010).

The third component is the motivation as a human to be competent (effectance
motivation). This is most relevant to this discussion, as it describes the need to
effectively interact with our environments, including the technologies of the day
(Epley, Waytz, and Cacioppo 2007). When confronted with an opaque technology,
a person may interpret its behaviors using the most readily available template at
hand, namely their personal human experience, in order to facilitate learning (Epley,
Waytz, and Cacioppo 2007; Waytz, Epley, and Cacioppo 2010). Perceiving human
characteristics, motivations, emotions, and cognitive processes from one’s own ex-
periences in a technology such as an AI chatbot, allows for a ready template of
comparison at the very least, and possibly an increase in ability to make sense of,
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and even predict, the agent’s behaviors. This may include being placed in a posi-
tion to master a certain technology, whether by incentives to learn, or fear of poor
outcomes should one not manage to learn.

These pressures extend to Al experts, as well as laypersons. In both scholarly and
commercial fields, Al experts face considerable pressure to demonstrate competence
in their work. Citation metrics and scholarly publications remain the primary metric
for tenure and promotion (Alperin et al. 2019), and the number of publications
in the AT field has boomed as evidenced by overall (preprint and peer-reviewed)
scholarly publications® (Maslej et al. 2023). The adoption of techniques underlying
technologies with the AI label, i.e. machine learning, has spread to fields beyond
Computer Science, e.g. Astronomy, Physics, Medicine and Psychology®. Outside of
academia, the number of jobs requiring Al expertise increases rapidly, with demand
for ‘Machine Learning’ skills clusters having increased over 500% from 2010 to 2020
(Maslej et al. 2023). Thus, according to theory, the pressure to demonstrate AI-
competence is fertile ground for anthropomorphism to occur.

6.4.3. CONFIRMATION BIAS

Confirmation bias is generally defined as favoring interpretations of evidence that
support existing beliefs or hypotheses (Nickerson 1998). Theory suggests that it
is a category of implicit and unconscious processes that involve assembling one-
sided evidence, and shaping it to fit one’s belief. Equally important is that theory
suggests these behaviors may be motivated or unmotivated, as one may selectively
seek evidence in favor of a hypothesis, which one may or may not have a personal
interest in supporting.

Hypotheses in present-day Al research are often implicit. Generally, these hypo-
theses are framed simply as a system being more accurate or efficient, compared
to other systems. Where other fields, such as medicine or quantitative social sci-
ences, would further articulate expectations in e.g. assigning specific conditions and
considering effect sizes assigned to each competing hypothesis, in Computer Sci-
ence and Al this is typically not done. This also may have to do with much of
the published work being more of an engineering achievement, rather than a true
hypothesis test seeking to explain and understand the world. However, in discus-
sions on emerging qualities like AGI, this engineering positioning gets muddier, and
more formal hypothesis testing would be justifiable: either one interprets outputs
as in support of hints towards AGI (the alternative hypothesis), or as merely the
result of an algorithm integrating qualities from the data it was trained on (the null
hypothesis).

Shttps://ourworldindata.org/grapher/annual-scholarly-publications-on-artificial-
intelligence?time=2010..2021

6Retrieved 23/01/23 using the search string "TITLE-ABS-KEY ( ( machine AND learning ) OR,
(artificial AND intelligence ) OR ai ) AND PUBYEAR > 2009 AND PUBYEAR < 2024 ”
from the SCOPUS database.
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Confirmation bias in hypothesis testing may manifest as a number of behaviors
(Nickerson (1998)). Scientists may pay little to no attention to competing hypotheses
or explanations, e.g. only considering the likelihood that outputs of a system support
one’s claims, and not the likelihood that the same outputs might occur if one’s
hypothesis is false. Similarly, bias may show when failing to articulate a sufficiently
strong null hypothesis leading to a ‘weak’ or ‘non-risky’ experiment, a problem
articulated in response to a number of scientific crises (Claesen et al. 2022). In
extreme cases, propositions may be made that cannot be falsified based on how
they are formulated. If the threshold to accept a favored hypothesis is too low,
observations consistent with the hypothesis are almost guaranteed, and in turn fail
to severely test the claim in question. Thus, one is far more likely to show evidence
in favor of their beliefs by posing weak null hypotheses.

Related to the formulation of hypotheses is the interpretation of evidence in favor
of competing hypotheses, wherein people will interpret identical evidence differently
based on their beliefs. As Nickerson (1998) reviews, individuals may place greater
emphasis or milder criticism on evidence in support of their hypothesis, and lesser
emphasis and greater criticism on evidence that opposes it.

6.5. OUTLOOK

Reflecting on the previous two sections, we make the following concrete recommend-
ations for future research:

1. (Acknowledgement of Human Bias) Researchers should be mindful of, and
explicit about, risks of human bias and anthropomorphization in interpreting
results, which both can be done as part of the results discussion, but also in a
dedicated ‘limitations’ section.

2. (Stronger Testing) Researchers should refrain from drawing premature conclu-
sions about AGI, unless these are based on strong hypothesis tests.

3. (Epistemologically Robust Standards) We call for more precise definitions of
terms like ‘intelligence’ and ‘AGI’, and publicly accountable and collaborative
iterations over how we will measure them, with explicit room for independent
reviewing and external auditing by the broader community.

Moreover, we believe that structural and cultural changes are in order to reduce
current incentives to chase Big Statement Outcomes in Al research and industry.
Our broadest and perhaps most ambitious goal is for our research community to
move away from authorship and instead embrace contributorship. This argument
has been raised long before in other research communities (Smith 1997) and more
recently within our own (Liem and Demetriou 2023). Specifically, Liem and Demet-
riou (2023) argue that societally impactful scientific insights should be treated as
open-source software artifacts. The open-source community sets a positive example
of how scientific artifacts should be published in many different ways. Not only does
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it adequately reward small contributions but it also naturally considers negative res-
ults (bugs) as part of the scientific process. Similarly, code reviews are considered
so integral to the process that they typically end up as accredited contributions to
projects. Open review platforms like OpenReview are a step in the right direction,
but still fall short of what we know is technically feasible. Finally, software testing
is, of course, not only essential but often obligatory before contributions are accep-
ted and merged. As we have pointed out repeatedly in this work, any claims about
AGI demand proper strong hypothesis tests. It is important to remember that AGI
remains the alternative hypothesis and that the burden of proof therefore lies with
those making strong claims.

6.6. CONCLUSION

As discussed above, Al research and development outcomes can easily be over-
interpreted, both from a data perspective and because of human biases and interests.
Academic researchers are not free from such biases. Thus, we call for the community
to create explicit room for organized skepticism.

For research that seeks to explain a phenomenon, clear hypothesis articulation and
strong null hypothesis formulation are needed. If claims of human-like or superhu-
man intelligence are made, these should be subject to severe tests (Claesen et al.
2022) that go beyond the display of surprise. Apart from focusing on getting novel
improvements upon state-of-the-art published, organizing red-teaming activities as a
community may help in incentivizing and normalizing constructive adversarial ques-
tioning. As the quest for AGI is so deeply rooted in human-like recognition, adding
our voice to emerging calls to be vigilant in communication (Shanahan 2024), we
put in an explicit word of warning about the use of terminology. Many terms used
in current AGI research (e.g. emergence, intelligence, learning, ‘better than human’
performance) have a common understanding in specialized research communities,
but have bigger, anthropomorphic connotations in laypersons. In fictional media,
depictions of highly intelligent AI have for long been going around. In a study of
films featuring robots, defined as ”...an artificial entity that can sense and act as a
result of (real-world or fictional) technology...”, in the 134 most highly rated science-
fiction movies on IMDB, 74 out of the 108 Al-robots studied had a humanoid shape,
and 68 out of those had sufficient intelligence to interact at an almost human-level
(Saffari et al. 2021). The authors identify human-like communication and the abil-
ity to learn as essential abilities in the depiction of AI agents in movies. They
further show a common plot: humans perceive the Al agents as inferior, despite
their possession of self-awareness and the desire to survive, which fuels the central
conflict of the film, wherein humanity is threatened by Al superior in both intellect
and physical abilities. It is often noted that experts and fictional content creators
interact, informing and inspiring each other (Saffari et al. 2021; Neri and Cozman
2020).

This image also permeates present-day non-fictional writings on AI, which often use
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anthropomorphized language (e.g. “ever more powerful digital minds” in the ‘Pause
Giant AT Experiments’ open letter (Future of Life Institute 2023a)). In the news,
we witness examples of humans falling in love with their AI chatbots (Morrone
2023; Steinberg 2023). The same news outlets discuss the human-like responses of
Microsoft’s Bing search engine, which had at that point recently been adopting GPT-
47. The article (Cost 2023), states “As if Bing wasn’t becoming human enough” and
goes on to claim it told them it loves them. Here, Al experts and influencers also
have considerable influence on how the narrative unfolds on social media: according
to Neri and Cozman (2020), actual Al-related harms did not trigger viral amplifica-
tion (e.g. the death of an individual dying while a Tesla car was in autopilot, or the
financial bankruptcy of a firm using AT technology to execute stock trades). Rather,
potential risks expressed by someone perceived as having expertise and authority
were amplified, such as statements made by Stephen Hawking during an interview
in 2014.

We as academic researchers carry great responsibility for how the narrative will
unfold, and what claims are believed. We call upon our colleagues to be explicitly
mindful of this. As attractive as it may be to beat the state-of-the-art with a grander
claim, let us return to the Mertonian norms, and thus safeguard our academic
legitimacy in a world that only will be eager to run with made claims.

7A large multimodal language model from OpenAT https://openai.com /research/gpt-4.







CONCLUSION

Machine learning and artificial intelligence have developed rapidly in recent decades.
Despite their success, state-of-the-art machine learning models are complex and their
decision logic is difficult to interpret by humans. This thesis contributes to a grow-
ing body of research and literature that aims to tackle these issues and ultimately
make opaque models more trustworthy. We have presented several technological
innovations, methodological advances, empirical analyses and critical evaluations of
existing paradigms and practices. In this final chapter, we conclude.

In Section 7.1, we begin by revisiting the main research questions set out at the
beginning of this thesis. Next, we assess the real-world implications of this thesis and
present an outlook for the future (Section 7.2). This is followed by a critical reflection
on the limitations of our own work and potential threats to the validity of this thesis
in Section 7.3. Finally, we present several recommendations for researchers and
practitioners in Section 7.4.

7.1. REVISITING RESARCH QUESTIONS

In TRQ 1.1, we ask what counterfactual explanations are, why they might be use-
ful for trustworthy AI and if there exist sufficient open-source implementations.
Highlighting shortcomings of popular XAI approaches like LIME and SHAP, we
argue that CE offer a useful and intuitive alternative. In particular, we explain
that contrary to methods relying on local surrogate models, CE have full fidelity by
construction as long as they are valid, which can be guaranteed (Guidotti 2022). Ad-
ditionally, while CE can be manipulated much like LIME and SHAP, remedies are
simple and cheap (Slack et al. 2020, 2021). In terms of other research contributions,
our work in Chapter 2 also highlights a weakness of surrogate-based CE methods
like REVISE (Joshi et al. 2019): the quality of the generated CE no longer depends
exclusively on the quality of the opaque model, but also the surrogate. To the best
of our knowledge, this is highlighted here for the first time. This observation has
had considerable impact on our work in Chapter 4 and Chapter 5.

131
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With respect to software availability, our study finds that—at the time it was
first written—the availability of open-source software to explain opaque AI mod-
els through counterfactuals is still limited. While researchers have made piece-wise
implementations of specific methods available!', the only attempt at providing a
unifying framework is the Python library CARLA (Pawelczyk et al. 2021). The
Python library was released before CounterfactualExplanations.jl. It offers support
for a number of different CE methods, but seems to no longer be actively main-
tained?. Within the Julia ecosystem, CounterfactualExplanations.jl is the first and
only unifying framework for CE. Our work addresses a growing demand for packages
that contribute towards trustworthy AI, which has been recognized and embraced
by the Julia community. To the best of our knowledge, our framework is the only
one that allows users to easily combine different CE methods and generate multiple
counterfactuals in parallel using both multithreading and multiprocessing. This has
enabled us to run experiments of a scale that is unprecedented in the field using one
TU Delft’s high-performance computing cluster ((DHPC) 2022).

Overall conclusion: Counterfactual explanations are an effective tool for trustworthy
AT and our CounterfactualExplanations.jl package fills an important gap in the open-
source software landscape.

In TRQ 1.2, we wonder about the dynamics of counterfactual explanation and al-
gorithmic recourse, when they are implemented in practice. Our study finds that
off-the-shelf counterfactual generators induce endogenous undesirable macrodynam-
ics with respect to the underlying model and data, if not handled carefully. In
particular, we show that a narrow focus on minimizing individual costs neglects
the downstream effects of recourse itself, which carries real-world risks; a bank, for
example, that offers individual recourse to its loan applicants, can be expected to
face increased credit risk if minimal cost recourse is implemented. We find that in-
dependent of the application, classifier performance can be expected to deteriorate
if models are retrained on datasets that include minimal cost counterfactuals.

A key observation is that minimal cost counterfactuals are fundamentally at odds
with plausibility. As we explained already in the introduction, a counterfactual
cannot be close to its factual starting point and close to the target domain both at
the same time. Consequently, CE methods that target plausibility such as Joshi et
al. (2019) and Schut et al. (2021), tend to suffer less from inducing undesirable
dynamics than the baseline method by Wachter, Mittelstadt, and Russell (2017).
We formalize this trade-off between individual costs and external costs due to im-
plausibility and propose simple and effective mitigation strategies. An important
consideration in this context is convergence: if the counterfactual search is discontin-
ued immediately after the decision boundary is crossed, then it is unlikely the final
counterfactual is plausible. In fact, we find that the simplest mitigation strategy
for undesirable endogenous dynamics is to simply choose a high enough decision

'In addition to the examples listed in Chapter 15 of Molnar (2022) we have identified Schut et
al. (2021)—a fast method for probabilistic classifiers—and Prado-Romero and Stilo (2022) for
graph counterfactual explanations.

2At the time of writing, there has not been an update to the code base in over two years.
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threshold for convergence: counterfactuals will typically end up deeper inside the
target domain if the counterfactual search is considered as converged if and only if
the classifier predicts the target class with high probability.

Overall conclusion: In the broader context of this thesis, the most important conclu-
sion of Chapter 3 is that implausible counterfactuals can cause unexpected negative
consequences in practice.

TRQ 1.3, asks if plausible explanations can be attained without relying on sur-
rogate models. We demonstrate that it is indeed possible to rely exclusively on
properties provided by the opaque model itself to achieve plausibility, but only if
the model itself has actually learned plausible explanations for the data, where this
latter condition is a feature of our proposed CE method, not a bug. To demonstrate
this, our study begins by revisiting an observation from Chapter 2: using surrogate
models to generate counterfactuals can affect the quality of the counterfactuals in
unexpected and adverse ways. We provide a simple and yet compelling motivat-
ing example demonstrating that the surrogate-based REVISE generator (Joshi et
al. 2019) can yield highly plausible counterfactuals, even if the opaque model has
learned demonstrably implausible explanations for the data. Thus, we argue, it
is possible to inadvertently “whitewash” an untrustworthy “black-box” model by
effectively reallocating the task of learning plausible explanations from the model
itself to the surrogate. To avoid such scenarios, we argue that inducing plausibility
at all costs is a misguided paradigm. Instead, we should aim to generate counter-
factuals that faithfully represent the conditional posterior distribution over inputs
learned by the model.

To achieve this goal, we propose a new method for generating energy-constrained
conformal counterfactuals—FECCCo. Our approach leverages ideas underlying joint
energy-based models (Grathwohl et al. 2020) and conformal prediction. Specifically,
we ensure that counterfactuals reach low-energy states with respect to the model and
lead to high-certainty predictions of the target class. Through extensive experiments,
we demonstrate the ECCCo achieves state-of-the-art levels of plausibility for well-
specified models. This allows researchers and practitioners to use ECCCo to assess
how trustworthy opaque models are based on the plausibility of the explanations
they have learned.

Overall conclusion: Counterfactual explanations can be both plausible and faithful
to the opaque model. Instead of aiming to develop model-agnostic tools for gen-
erating plausible explanations (“modelling explanations”), we should hold models
accountable for delivering such explanations.

TRQ 1.4, asks a natural follow-up question: provided we have a way to generate
faithful counterfactuals, can we use them to improve the trustworthiness of models?
To this end, our work in Chapter 5 introduces a new training regime for differen-
tiable models like artificial neural networks: counterfactual training. It involves
generating faithful counterfactual explanations during each training iteration and
then backpropagating model gradients with respect to the contrastive divergence
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between counterfactuals and observed training samples in the target domain. Ad-
ditionally, we interpret intermediate counterfactuals near the decision boundary as
adversarial examples and penalize the model’s adversarial loss. Our work therefore
explicitly connects explainable to adversarial ML.

Our empirical findings demonstrate that CT yields more adversarially robust mod-
els that learn more plausible explanations for the data. Beyond plausibility and
adversarial robustness, counterfactual training can also be used to ensure that mod-
els learn actionable explanations. To this end, we prove that CT induces models
that are less sensitive to immutable or protected features. Importantly, our empir-
ical results also show that these benefits with respect to trustworthiness do not come
at the cost of reduced predictive performance. We find that predictive performance
of models on test data is either unaffected by CT or more robust or both. The work
in this chapter therefore provide substantial advances with respect to training more
trustworthy Al

Overall conclusion: Faithful counterfactual explanations can be leveraged during
training to improve models with respect to explainability and adversarial robust-
ness.

TRQ 1.5, enquires about the role of trustworthy Al in the context of LLMs. In
Chapter 6, we critically assess a viral recent work that uses standard tools from
mechanistic interpretability to arrive at the conclusion that modern LLMs learn
world models. This in turn has been characterized as a milestone on the path to-
wards AGI. Our study presents a number of experiments involving models of varying
complexity to demonstrate that the finding of concept-related representations in lat-
ent spaces of models should not surprise us and certainly not be seen as evidence
in favor of AGI. A thorough review of the social sciences’ literature demonstrates
why researchers might still fall into that trap, especially in an environment that has
made AGI the north star of Al research (Blili-Hamelin et al. 2025). In summary, we
caution researchers against misinterpreting results from mechanistic interpretability
or else its role in the pursuit of more trustworthy Al may be tarnished.

Owverall conclusion: Tools from mechanistic interpretability should be used carefully
to avoid tarnishing their credibility with respect to trustworthy AI. Further work is
needed to improve the usefulness of CE for LLMs.

7.2. IMPLICATIONS AND OUTLOOK

The findings in this work have shed light on many challenges and questions in the
field of trustworthy AI and, in particular, counterfactual explanations. While we
have also proposed solutions to some of the more specific challenges that we have
encountered, our work highlights broader challenges that remain unanswered.

Chapter 3 and Chapter 4 have demonstrated that the field needs to rethink some
of its core objectives. Chapter 3, in particular, showed that algorithmic recourse
in practice involves multiple stakeholders typically competing for scarce resources.
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As more opaque Al is deployed in the real world, we may have to rethink recourse
as an economic and societal problem. Thus research on AR will inevitably inform
future economic and societal questions and vice versa. Our findings from Chapter 4
require us to rethink what we truly want to get out of XAI methods: practical but
possibly misleading answers or enhanced understanding of model behavior? Our
findings also invite follow-up questions about the evaluation of counterfactual ex-
planations. While we provide a nuanced definition and metric for faithfulness, we
do not pretend to provide final answers in Chapter 4 and believe that this objective
for counterfactuals deserves more attention.

Chapter 5 has important implications for the connection between explainability
and adversarial robustness in machine learning. Our framework for counterfactual
training constitutes a solid starting ground, but there is likely much untapped po-
tential for synergies between these two subfields of trustworthy AI. We therefore
believe that researchers from both communities would benefit from collaborating.
We further believe that practitioners would benefit from taking a holistic approach
to trustworthy AI, explicitly recognizing that various objectives may complement
each other but also compete.

In all of this, we hope that the work presented in Chapter 2 can continue to play a
role in facilitating research and experimentation. The broader ecosystem of packages
that have grown out of this initial work have certainly gained some traction and
popularity in the Julia community, but to create a lasting impact they will need to
continue to be maintained and developed further. We believe that Taija has great
potential to for both research and industry.

Finally, results presented in this thesis also have implications for the ongoing dis-
course around AGI. Chapter 6 has shown that we should insist on adhering to
scientific principles when engaging in this discourse as academics, especially those
among us who are considered as thought leaders by many. As a whole, this thesis
has also shown that we are still struggling to truly understand and control the be-
havior of even the most basic building blocks of AI. This should give anyone in our
field currently treating AGI as the north-star goal of Al research serious pause.

To end on an optimistic note, we believe that this work also provides hope for
trustworthy AI. We have shown that it is possible to use model explanations for
good: if carefully constructed, they can help us to not only assess the trustworthiness
of opaque models, but also improve it. This requires work, but as economists like
to say: “There is no such thing as a free lunch™>.

3This quote is often attributed to Milton Friedman, but it likely originated earlier. According
to the Cambridge Dictionary, the phrase is used to emphasize that you cannot get something
for nothing: https://dictionary.cambridge.org/us/dictionary/english/there-s-no-such-thing-as-
a-free-lunch
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7.3. LIMITATIONS AND THREATS TO VALIDITY

In this section, we highlight limitations and threats to the validity of our work. We
focus on points that were not already discussed explicitly in the context of individual
chapters.

7.3.1. CONSTRUCT VALIDITY

Our evaluations of counterfactuals in Chapter 4 and Chapter 5 rely on imperfect
metrics used to assess the plausibility and faithfulness of explanations. For plaus-
ibility, we extend existing distance-based metrics for measuring the dissimilarity
between counterfactuals and observed training data in the target domain. This is
a valid approach to assess plausibility, to the extent that “broadly consistent with
the observed data” is an adequate proxy for “plausible as assessed by humans”. We
found in our own work that this is not always the case: in Chapter 4, for instance, we
found that image counterfactuals produced by ECCCo were sometimes more visu-
ally appealing and plausible than the distance-based evaluation metrics suggested.
To mitigate this, we tested different distance measures and eventually introduced a
new divergence measure in Chapter 5, but we recognize that ideally plausibility of
explanations would be assessed directly by humans. The scale of our experiments
involving multiple millions of counterfactuals, made this option infeasible.

Regarding faithfulness, we rely on established methods for estimating the conditional
model posterior over inputs (Grathwohl et al. 2020; Murphy 2023). This approach
has two potential shortcomings with respect to the validity of our work: firstly, the
estimated empirical distributions are subject to estimation error; secondly, our pro-
posed method in Chapter 4 is biased towards this metric by construction, although
the same can be said about other methods targeting certain metrics like minimal
costs. The important finding in this context is that our proposed counterfactual gen-
erator can satisfy its primary target (faithfulness) while also achieving its secondary
target (plausibility).

7.3.2. INTERNAL VALIDITY

Further on evaluation, we rely on cross-validation to account for stochasticity: spe-
cifically, we always generate and evaluate counterfactuals multiple times, each time
drawing a different random subsample of the available data. We then compute
averages and standard deviations of our evaluation metrics to get a sense of how
substantial and significant the differences in outcomes are for the various methods
we test. This is consistent with common practice in the related literature and—we
believe—sufficient to arrive at the conclusions we present in individual chapters.
Nonetheless, we recognize that in Chapter 4 we fall short of testing our evaluations
and rankings as rigorously for statistical significance as we do in Chapter 3.
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The internal validity of the findings in Chapter 3 is largely threatened by the simpli-
fying assumptions we make about stakeholder actions. For example, we assume that
any individual provided with a valid algorithmic recourse ends up implementing the
exact recommendations. We also assume that model owners retrain models regu-
larly after individuals have implemented recourse and that no entirely new samples
are added to the training population. Retraining is continued over multiple rounds
even in the face of model deterioration and other negative dynamics after the first
few rounds. All of these modelling assumptions are necessarily simple to focus on
our main narrative. We intentionally abstract from detail to study the worst-case
high-level effects we are interested in.

7.3.3. EXTERNAL VALIDITY

To empirically test our claims and proposed methods in Chapter 3, Chapter 4 and
Chapter 5, we employed both synthetic and publicly available real-world datasets
that are commonly studied in the related literature. We have also largely relied on
studying small and simple neural network architectures, again consistent with the
related literature. While we have made an effort to always include a broad range
of sources to ensure a certain degree of robustness in our findings, it is certainly
possible and indeed expected that some of our findings do not always hold true in
practice. We expect this in some cases, because certain results are subject to hy-
perparameter sensitivity, in particular results from Chapter 4 and to a lesser degree
Chapter 5. A related threat to external validity is scalability: the computational cost
involved in generating counterfactual explanations increases in the dimensionality of
inputs, which may make certain methods we propose—in particular counterfactual
training—computationally prohibitive.

Concerning Chapter 6, it could be argued that the experiments we present involve
models that are too simple to warrant any discussion around AGI*. Our response to
this would be that the choice of simple models that have not previously been linked
to AGI is very much intentional. As our experiments show, properties of LLMs
that have been presented as novel and surprising are in fact shared by much simpler
models.

7.3.4. SOFTWARE LIMITATIONS

Since Chapter 2 was published in 2023, we have continued to actively develop
and maintain CounterfactualExplanations.jl, such that it has now reached ma-
turity with respect to fundamental features. That being said, to the best of our
knowledge it has never been tested in a production environment involving larger
models and datasets than the ones we have used in our research. Due to our
focus on simulations and cross-validations involving many counterfactuals (high

4This is in fact how one of the few dissenting audience members at ICML dismissed our work
without any further consideration.
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n) of typically moderate dimensionality (small p), we have prioritized support
for parallelization through multithreading and multiprocessing, as opposed to
graphical processing units (GPUs). Thankfully, Julia offers fantastic support
also for the latter and since we rely on standard routines for autodifferention,
it should be straightforward to address this limitation. Beyond this, there
are numerous smaller outstanding development tasks listed on our repository:
JuliaTrustworthy AT/CounterfactualExplanations.jl /issues.

Concerning internal validity, our software is no different from any other software
in that it contains bugs and inefficiencies. We have encountered such shortcomings
in the past and expect to find more in the future. Relatedly, certain software
architecture and prioritization choices we have made may be suboptimal for specific
applications, even though they have served us well in the past. Regarding external
validity, there is a strong possibility that Patrick will not be able to maintain it as
actively in the past. To address this risk, we have taken steps to attract external
contributions in the past and aim to continue in this fashion.

7.4. RECOMMENDATIONS FOR RESEARCH AND PRACTICE

In this section, we provide general recommendations for both researchers and prac-
titioners working with opaque machine learning models. They are derived from our
research findings but not in all cases directly tied to specific results.

Recommendation 7.1

Beware of high-dimensional spaces, especially large latent parameter spaces of
machine learning models.

As proposition (5) of this thesis states: strange things really do happen in high-
dimensional spaces. This is an observation that universally applies to all chapters of
this thesis in one way or another. Recommendation 7.1 can be seen as general call
for caution. Even though we—along with many others working in the field—have
contributed through our work towards making opaque models more trustworthy,
there is simply no silver bullet. For better or worse, high degrees of freedom in
representation learning make models susceptible to learning representations that
humans cannot interpret. This is what makes such models so powerful at achieving
narrow objectives. But as we have seen throughout this thesis, it also has the
potential to make them sensitive to spurious associations in the data they are trained
on. Our work contributes several results that can aid researchers in navigating this
challenge, but we want to be very clear that we think of our findings as remedies,
not a cure.

We consider explainable and trustworthy Al as a moving target, just like adversarial
robustness is still considered an unsolved challenge even for simple models (Kolter
2023): for every explanation and any attack we have identified, another is likely to
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follow. Thus, we recommend that researchers and practitioners avoid striving for
trustworthy Al as some attainable end goal, and instead recognize that its continu-
ous process that requires work. Counterfactual explanations provide a particularly
useful framework to deal with models that enjoy large degrees of freedom, precisely
because they are similarly unconstrained in terms of the feature space they can
occupy.

Recommendation 7.2

Explanations are rarely unique and researchers and practitioners studying and
using opaque machine learning models should embrace this fact.

Multiplicity of counterfactual explanations is a feature, not a bug. Uniqueness has in
the past been considered as an explicit goal in the context of XAlI, possibly because
humans are naturally inclined to prefer straight answers over complicated ones. We
would argue, however, that the notion of finding unique solutions to our search for
model explanations is fundamentally at odds with basic properties of the models we
are studying: they are not unique solutions either, not even to the narrow objectives
we typically train them for. Any fitted neural network is just a random outcome of
a stochastic training process that could have resulted in any one of many different
paramterizations that provide compelling explanations for the data (Wilson 2020).

More to the point of explainability and its use cases, our work has also frequently
shown that real-world objectives are not in fact narrow: Chapter 3 highlighted the
trade-off between individual and external costs in algorithmic recourse; Chapter 4
shed light on the interplay between plausibility and faithfulness of counterfactual ex-
planations; and in Chapter 5 we have made the case for explicitly adjusting training
objectives to induce models to learn actionable and plausible explanations. Since
objectives are multiple and context-dependent, explanations are also inevitably vari-
able. Therefore, it is our recommendation that researchers and practitioners use
tools for trustworthy AI that are flexible enough to accommodate such multiplicity
of objectives and explanations.

Recommendation 7.3

Explanations for models should be faithful first, plausible second.

Speaking of objectives, we believe that the guiding objective for counterfactual
explanations—and in fact any XAI method—should be faithfulness to the model.
It is very difficult to think of scenarios that call for plausible, robust, diverse, ac-
tionable or easily affordable recourse recommendations that do not also faithfully
explain the model in question. At best, we would consider this a short-term solution
to dealing with opaque models in practice. As we have demonstrated in Chapter 4,
it is entirely possible to generate plausible explanations for accurate and yet funda-
mentally untrustworthy models. This should be keenly avoided, since it may instill
trust in models that are not worthy of it.
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Recommendation 7.4

Hold models accountable for learning plausible explanations, instead of mod-
elling explanations to your liking.

In close relation to Recommendation 7.3, we recommend that researchers in XAI
avoid considering plausible, model-agnostic explanations as the holy grail. Explan-
ations do not make automated decisions that may affect the lives of individuals,
models do. Explanations are merely reflections of how models arrive at the decisions
they make. Thus, we should use explanations primarily to inform our understanding
of models and strive to improve models based on explanations, instead of treating
models as fixed and tailoring our explanation around them. Otherwise, we risk still
treating models as oracles that cannot be held accountable, much like we have done
in the past (O’Neil 2016).

This is more important in the age of LLMs than ever before. As we have argued in
Chapter 6, people are prone to anthropomorphize and idolize complex technologies
they do not fully understand. There is a real risk today that people are so dumb-
struck and overwhelmed by machines that are quite literally optimized to appeal
to them, that people end up blindly relying on them, even worshiping them. This,
coupled with a lack of accountability, provides model owners with unprecedented
powers to affect individuals. No matter how powerful these models become, we need
to avoid thinking that they are inscrutable, leave alone infallible.

Recommendation 7.5

Invite diverse perspectives into research and practice.

This last Recommendation 7.5 is not directly tied to any specific result of this work,
but rather the thesis as a whole and the direct or indirect contributions by the
many people that co-shaped it. In times when diversity is once again under threat by
narrow-minded people in powerful positions, we find it important to share that in our
own experience, diverse perspectives supercharge innovation. Many of the findings in
this thesis have resulted from combining ideas from different subfields of AT or even
external domains including economics and other social sciences. This culminated in
Chapter 6, which involved co-authors from a variety of different disciplines and is
likely going to be one of the more influential contributions of this thesis.
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CLOSING REMARKS

Around the beginning of this Ph.D. trajectory, my mother told me that apparently
as a young kid I was fascinated with the 2001 movie, “A.I.”; by Steven Spielberg.
According to her, at just 8 years of age, I must have been way more receptive to
the potential impact of artificial intelligence than herself, evidently already paving
the way for what would be my future in this field. Like most parents, I think my
mother may have given me a little too much credit there, because all I remember
from that movie is “the kid who played young Anakin Skywalker” (or at least that
is who I thought it was®).

Still, after initially dreaming of becoming an actor myself only to eventually get a
degree in economics and work in monetary policy for a while, somehow I ended up
spending the past four years of my life researching the field that gave that Spielberg
movie its name. So, how exactly does a former central banker end up pursuing a
Ph.D. in Trustworthy AI?

My time at the Bank of England coincided with a number of organizational trans-
formations that were geared towards embracing technologies and data sources, that
in the eyes of most economists would have been considered unconventional at the
time. The Bank’s Advanced Analytics (AA) division had been founded just three
years before I entered the “Old Lady of Threadneedle Street”® for the first time in
the summer of 2017, then as an intern. While many of us at the Bank marvelled at
the innovative research coming out of AA, its impact on policy decisions was prob-
ably fairly described as “tangential” (at least from my perspective as an analyst
who regularly contributed briefing rounds of the Bank’s Monetary Policy Commit-
tee). Even though the terms “big data” and later “machine learning” would grab
peoples’ attention during meetings, I sensed a certain reluctance amongst colleagues
and superiors to substitute tried and trusted tools for new technologies that few of
us understood very well.

At the time, I was naively optimistic that the necessary understanding could be
swiftly acquired, and we would soon replace all of our ordinary least squares re-
gressions with gradient-boosting trees and universal function approximators (a.k.a.
artificial neural networks). Full of enthusiasm to “start building”, I went back to Bar-
celona School of Economics to study for a Master Degree in Data Science, and—as it

5As it turns out, the child actor playing the advanced robotic boy in “A.1” is Haley Joel Osment,
who auditioned to play young Anakin but did not actually get the role. Young Anakin was in
fact played by Jake Lloyd. The more you know ...

6The Bank’s nickname dates back to cartoon published in 1797:
https://www.bankofengland.co.uk/explainers/who-is-the-old-lady-of-threadneedle-street.
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turns out—to find out just how blatantly ignorant I had been about these promising
new technologies. For the first time, I realized that the brave new world of machine
learning clashed on fundamental levels with principles I had been taught in tradi-
tional econometrics: suddenly, we spent hours optimizing models for accuracy on
Kaggle benchmark datasets with little to no attention to the underlying data itself.
The assignment had completely changed: from understanding why things happen, to
predicting what things happen. To be fair, we did cover explainability on the fringes
even in these types of courses, but it still started to dawn on me that central banks
would not, in fact, trust the Deep Vector Autoregressive Models we proposed in our
master’s project to produce future inflation forecasts (Agusti, Costa, and Altmeyer
2023). After all, public policymakers, and the people subjected to their decisions,
do care about why things happen, not just what things happen. So, that is how I
ended up pursuing this Ph.D. in Trustworthy AI, convinced—as I still am—that the
trustworthiness of these models can and should be improved, even though it might
not be easy.

Now at the end of this journey, I remain cautiously optimistic that we can continue
to make progress towards trustworthy AI. Despite having witnessed practices and
trends that concern me, I still believe it is possible to embrace and promote innov-
ation and progress without adhering to premature paradigms like “moving fast and
breaking things”. This will require patience, persistence and effort—virtues that I
believe are being undervalued in many places and communities of today’s fast-paced
world. Personally, I believe that trying to adhere to these virtues has played an im-
portant role in obtaining this Ph.D. degree, outweighed only by the importance of
the many people involved in this journey.
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SUPPLEMENTARY MATERIAL
FOR CHAPTER 3

D.1. DETAILED RESULTS:. SYNTHETIC DATA

D.1.1. LINE CHARTS

The evolution of the evaluation metrics over the course of the experiment is shown
for different datasets in Figure D.1 to Figure D.4.

D.1.2. ERROR BAR CHARTS

The evaluation metrics at the end of the experiment are shown for different datasets

in Figure D.5 to Figure D.8.

D.1.3. STATISTICAL SIGNIFICANCE

Table D.1 presents the tests for statistical significance of the estimated MMD met-

rics.

Table D.1. Tests for statistical significance of the estimated MMD metrics. We have
highlighted p-values smaller than the significance level o = 0.05 in bold.

Data: Synthetic.

Metric Data Generator Model p-value
MMD Circles DICE Deep Ensemble 0.988
MMD Circles DICE Linear 1.0
MMD Circles DICE MLP 0.99
MMD Circles Generic ( =0.5) Deep Ensemble 0.996
MMD Circles  Generic ( =0.5) Linear 0.996

Continued below.
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Metric Data Generator Model p-value
MMD Circles  Generic ( =0.5) MLP 0.99
MMD Circles Greedy Deep Ensemble 0.992
MMD Circles Greedy Linear 1.0
MMD Circles Greedy MLP 0.994
MMD Circles Latent Deep Ensemble  0.9975
MMD Circles Latent Linear  0.9925
MMD Circles Latent MLP 1.0
MMD Linearly Separable DICE Deep Ensemble 0.0
MMD Linearly Separable DICE Linear 0.0
MMD Linearly Separable DICE MLP 0.0
MMD Linearly Separable Generic ( =0.5) Deep Ensemble 0.0
MMD Linearly Separable Generic ( =0.5) Linear 0.0
MMD Linearly Separable Generic ( =0.5) MLP 0.0
MMD Linearly Separable Greedy Deep Ensemble 0.0
MMD Linearly Separable Greedy Linear 0.0
MMD Linearly Separable Greedy MLP 0.0
MMD Linearly Separable Latent Deep Ensemble 0.748
MMD Linearly Separable Latent Linear 0.768
MMD Linearly Separable Latent MLP 0.69
MMD Moons DICE Deep Ensemble 0.0
MMD Moons DICE Linear 0.0
MMD Moons DICE MLP 0.0
MMD Moons Generic ( =0.5) Deep Ensemble 0.0
MMD Moons  Generic ( =0.5) Linear 0.0
MMD Moons  Generic ( =0.5) MLP 0.0
MMD Moons Greedy Deep Ensemble 0.0
MMD Moons Greedy Linear 0.0
MMD Moons Greedy MLP 0.0
MMD Moons Latent Deep Ensemble 0.0
MMD Moons Latent Linear 0.0
MMD Moons Latent MLP 0.0
MMD Overlapping DICE Deep Ensemble 0.0
MMD Overlapping DICE Linear 0.0
MMD Overlapping DICE MLP 0.0
MMD Overlapping  Generic ( =0.5) Deep Ensemble 0.0
MMD Overlapping  Generic ( =0.5) Linear 0.0
MMD Overlapping  Generic ( =0.5) MLP 0.0
MMD Overlapping Greedy Deep Ensemble 0.0
MMD Overlapping Greedy Linear 0.0
MMD Overlapping Greedy MLP 0.0
MMD Overlapping Latent Deep Ensemble 0.0
MMD Overlapping Latent Linear 0.0
MMD Overlapping Latent MLP 0.0

Continued below.
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Metric Data Generator Model p-value
PP MMD Circles DICE Deep Ensemble 0.996
PP MMD Circles DICE Linear 0.796
PP MMD Circles DICE MLP  0.9975
PP MMD Circles Generic ( =0.5) Deep Ensemble 1.0
PP MMD Circles Generic ( =0.5) Linear 0.996
PP MMD Circles  Generic ( =0.5) MLP 0.992
PP MMD Circles Greedy Deep Ensemble 1.0
PP MMD Circles Greedy Linear 0.0
PP MMD Circles Greedy MLP 0.996
PP MMD Circles Latent Deep Ensemble  0.9975
PP MMD Circles Latent Linear 0.0
PP MMD Circles Latent MLP 0.994
PP MMD Linearly Separable DICE Deep Ensemble  0.9525
PP MMD  Linearly Separable DICE Linear 0.0
PP MMD Linearly Separable DICE MLP 0.964
PP MMD Linearly Separable Generic ( =0.5) Deep Ensemble 0.958
PP MMD Linearly Separable Generic ( =0.5) Linear 0.0
PP MMD Linearly Separable Generic ( =0.5) MLP 0.944
PP MMD Linearly Separable Greedy Deep Ensemble 0.716
PP MMD Linearly Separable Greedy Linear 0.0
PP MMD  Linearly Separable Greedy MLP 0.684
PP MMD Linearly Separable Latent Deep Ensemble 0.856
PP MMD Linearly Separable Latent Linear 0.46
PP MMD Linearly Separable Latent MLP 0.852
PP MMD Moons DICE Deep Ensemble 0.865
PP MMD Moons DICE Linear 0.0
PP MMD Moons DICE MLP 0.87
PP MMD Moons Generic ( =0.5) Deep Ensemble 0.678
PP MMD Moons  Generic ( =0.5) Linear 0.0
PP MMD Moons  Generic ( =0.5) MLP 0.84
PP MMD Moons Greedy Deep Ensemble 0.388
PP MMD Moons Greedy Linear 0.0
PP MMD Moons Greedy MLP 0.346
PP MMD Moons Latent Deep Ensemble 0.902
PP MMD Moons Latent Linear 0.004
PP MMD Moons Latent MLP 0.91
PP MMD Overlapping DICE Deep Ensemble 0.0
PP MMD Overlapping DICE Linear 0.0
PP MMD Overlapping DICE MLP 0.002
PP MMD Overlapping Generic ( =0.5) Deep Ensemble 0.004
PP MMD Overlapping  Generic ( =0.5) Linear 0.0
PP MMD Overlapping  Generic ( =0.5) MLP 0.002
PP MMD Overlapping Greedy Deep Ensemble 0.002

Continued below.
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Metric Data Generator Model p-value

PP MMD Overlapping Greedy Linear 0.0

PP MMD Overlapping Greedy MLP 0.004

PP MMD Overlapping Latent Deep Ensemble 0.034

PP MMD Overlapping Latent Linear 0.012

PP MMD Overlapping Latent MLP 0.034

PP MMD (grid) Circles DICE Deep Ensemble 0.762
PP MMD (grid) Circles DICE Linear 0.814
PP MMD (grid) Circles DICE MLP  0.7375
PP MMD (grid) Circles Generic ( =0.5) Deep Ensemble 0.89
PP MMD (grid) Circles  Generic ( =0.5) Linear 0.994
PP MMD (grid) Circles  Generic ( =0.5) MLP 0.688
PP MMD (grid) Circles Greedy Deep Ensemble 0.568
PP MMD (grid) Circles Greedy Linear 0.0
PP MMD (grid) Circles Greedy MLP 0.776
PP MMD (grid) Circles Latent Deep Ensemble 1.0
PP MMD (grid) Circles Latent Linear 0.0
PP MMD (grid) Circles Latent MLP 0.996
PP MMD (grid) Linearly Separable DICE Deep Ensemble 0.0
PP MMD (grid) Linearly Separable DICE Linear 0.0
PP MMD (grid) Linearly Separable DICE MLP 0.0
PP MMD (grid) Linearly Separable Generic ( =0.5) Deep Ensemble 0.0
PP MMD (grid) Linearly Separable Generic ( =0.5) Linear 0.0
PP MMD (grid) Linearly Separable Generic ( =0.5) MLP 0.0
PP MMD (grid) Linearly Separable Greedy Deep Ensemble 0.0
PP MMD (grid) Linearly Separable Greedy Linear 0.0
PP MMD (grid) Linearly Separable Greedy MLP 0.0
PP MMD (grid) Linearly Separable Latent Deep Ensemble 0.0
PP MMD (grid) Linearly Separable Latent Linear 0.0
PP MMD (grid) Linearly Separable Latent MLP 0.0
PP MMD (grid) Moons DICE Deep Ensemble  0.1225
PP MMD (grid) Moons DICE Linear 0.0
PP MMD (grid) Moons DICE MLP  0.01
PP MMD (grid) Moons  Generic ( =0.5) Deep Ensemble 0.016
PP MMD (grid) Moons  Generic ( =0.5) Linear 0.0
PP MMD (grid) Moons  Generic ( =0.5) MLP 0.02
PP MMD (grid) Moons Greedy Deep Ensemble 0.006
PP MMD (grid) Moons Greedy Linear 0.0
PP MMD (grid) Moons Greedy MLP 0.0
PP MMD (grid) Moons Latent Deep Ensemble 0.114
PP MMD (grid) Moons Latent Linear 0.004
PP MMD (grid) Moons Latent MLP 0.174
PP MMD (grid) Overlapping DICE Deep Ensemble 0.002
PP MMD (grid) Overlapping DICE Linear 0.0

Continued below.
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Metric Data Generator Model p-value
PP MMD (grid) Overlapping DICE MLP 0.0
PP MMD (grid) Overlapping Generic ( =0.5) Deep Ensemble 0.0
PP MMD (grid) Overlapping  Generic ( =0.5) Linear 0.0
PP MMD (grid) Overlapping  Generic ( =0.5) MLP 0.0
PP MMD (grid) Overlapping Greedy Deep Ensemble 0.0
PP MMD (grid) Overlapping Greedy Linear 0.0
PP MMD (grid) Overlapping Greedy MLP 0.002
PP MMD (grid) Overlapping Latent Deep Ensemble 0.208
PP MMD (grid) Overlapping Latent Linear 0.02
PP MMD (grid) Overlapping Latent MLP 0.342
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Figure D.1. Evolution of evaluation metrics over the course of the experiment.
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Figure D.2. Evolution of evaluation metrics over the course of the experiment.
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D.2. DETAILED RESULTS:. REAL-WORLD DATA

D.2.1. LINE CHARTS

The evolution of the evaluation metrics over the course of the experiment is shown
for different datasets in Figure D.9 to Figure D.11.

D.2.2. ERROR BAR CHARTS

The evaluation metrics at the end of the experiment are shown for different datasets
in Figure D.12 to Figure D.14.

D.2.3. STATISTICAL SIGNIFICANCE

Table D.2 presents the tests for statistical significance of the estimated MMD met-
rics.

Table D.2. Tests for statistical significance of the estimated MMD metrics. We have
highlighted p-values smaller than the significance level o = 0.05 in bold.
Data: Real-World.

Metric Data Generator Model p-value
MMD Cal Housing DICE Deep Ensemble 0.0
MMD Cal Housing DICE Linear 0.0
MMD Cal Housing DICE MLP 0.0
MMD Cal Housing  Generic ( =0.5) Deep Ensemble 0.0
MMD Cal Housing Generic ( =0.5) Linear 0.0
MMD Cal Housing Generic ( =0.5) MLP 0.0
MMD Cal Housing Greedy Deep Ensemble 0.0
MMD Cal Housing Greedy Linear 0.0
MMD Cal Housing Greedy MLP 0.0
MMD Cal Housing Latent Deep Ensemble 0.0
MMD Cal Housing Latent Linear 0.0
MMD Cal Housing Latent MLP 0.0
MMD  Credit Default DICE Deep Ensemble 1.0
MMD  Credit Default DICE Linear 1.0
MMD  Credit Default DICE MLP 1.0
MMD  Credit Default  Generic ( =0.5) Deep Ensemble 1.0
MMD  Credit Default  Generic ( =0.5) Linear 1.0
MMD  Credit Default  Generic ( =0.5) MLP 1.0
MMD  Credit Default Greedy Deep Ensemble 1.0
MMD  Credit Default Greedy Linear 1.0
MMD  Credit Default Greedy MLP 1.0
MMD  Credit Default Latent Deep Ensemble 0.0

Continued below.
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Metric Data Generator Model p-value
MMD  Credit Default Latent Linear 1.0
MMD  Credit Default Latent MLP 0.0
MMD GMSC DICE Deep Ensemble 0.082
MMD GMSC DICE Linear 0.51
MMD GMSC DICE MLP 0.338
MMD GMSC  Generic ( =0.5) Deep Ensemble 0.306
MMD GMSC  Generic ( =0.5) Linear 0.278
MMD GMSC  Generic ( =0.5) MLP 0.128
MMD GMSC Greedy Deep Ensemble 0.032
MMD GMSC Greedy Linear 0.006
MMD GMSC Greedy MLP 0.0
MMD GMSC Latent Deep Ensemble 0.0
MMD GMSC Latent Linear 0.0
MMD GMSC Latent MLP 0.0
PP MMD Cal Housing DICE Deep Ensemble 0.0
PP MMD Cal Housing DICE Linear 0.0
PP MMD Cal Housing DICE MLP 0.0
PP MMD Cal Housing Generic ( =0.5) Deep Ensemble 0.0
PP MMD Cal Housing  Generic ( =0.5) Linear 0.0
PP MMD Cal Housing Generic ( =0.5) MLP 0.0
PP MMD Cal Housing Greedy Deep Ensemble 0.0
PP MMD Cal Housing Greedy Linear 0.0
PP MMD Cal Housing Greedy MLP 0.0
PP MMD Cal Housing Latent Deep Ensemble 0.0
PP MMD Cal Housing Latent Linear 0.0
PP MMD Cal Housing Latent MLP 0.0
PP MMD  Credit Default DICE Deep Ensemble 0.0
PP MMD  Credit Default DICE Linear 0.0
PP MMD  Credit Default DICE MLP 0.0
PP MMD  Credit Default Generic ( =0.5) Deep Ensemble 0.0
PP MMD  Credit Default Generic ( =0.5) Linear 0.0
PP MMD  Credit Default  Generic ( =0.5) MLP 0.0
PP MMD  Credit Default Greedy Deep Ensemble 0.0
PP MMD  Credit Default Greedy Linear 0.044
PP MMD  Credit Default Greedy MLP 0.0
PP MMD  Credit Default Latent Deep Ensemble 0.0
PP MMD  Credit Default Latent Linear 0.436
PP MMD  Credit Default Latent MLP 0.0
PP MMD GMSC DICE Deep Ensemble 0.032
PP MMD GMSC DICE Linear 0.0
PP MMD GMSC DICE MLP 0.0
PP MMD GMSC  Generic ( =0.5) Deep Ensemble 0.018
PP MMD GMSC  Generic ( =0.5) Linear 0.0

Continued below.
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Metric Data Generator Model p-value

PP MMD GMSC  Generic ( =0.5) MLP 0.0

PP MMD GMSC Greedy Deep Ensemble 0.02

PP MMD GMSC Greedy Linear 0.0

PP MMD GMSC Greedy MLP 0.0

PP MMD GMSC Latent Deep Ensemble 0.008

PP MMD GMSC Latent Linear 0.0

PP MMD GMSC Latent MLP 0.0

PP MMD (grid) Cal Housing DICE Deep Ensemble 0.0
PP MMD (grid) Cal Housing DICE Linear 0.0
PP MMD (grid)  Cal Housing DICE MLP 0.0
PP MMD (grid) Cal Housing Generic ( =0.5) Deep Ensemble 0.0
PP MMD (grid) Cal Housing  Generic ( =0.5) Linear 0.0
PP MMD (grid) Cal Housing  Generic ( =0.5) MLP 0.004
PP MMD (grid) Cal Housing Greedy Deep Ensemble 0.0
PP MMD (grid) Cal Housing Greedy Linear 0.0
PP MMD (grid) Cal Housing Greedy MLP 0.0
PP MMD (grid) Cal Housing Latent Deep Ensemble 0.006
PP MMD (grid) Cal Housing Latent Linear 0.01
PP MMD (grid) Cal Housing Latent MLP 0.026
PP MMD (grid) Credit Default DICE Deep Ensemble 0.0
PP MMD (grid) Credit Default DICE Linear 0.0
PP MMD (grid) Credit Default DICE MLP 0.0
PP MMD (grid) Credit Default Generic ( =0.5) Deep Ensemble 0.0
PP MMD (grid) Credit Default Generic ( =0.5) Linear 0.0
PP MMD (grid) Credit Default Generic ( =0.5) MLP 0.0
PP MMD (grid) Credit Default Greedy Deep Ensemble 0.164
PP MMD (grid) Credit Default Greedy Linear 0.0
PP MMD (grid) Credit Default Greedy MLP 0.0
PP MMD (grid) Credit Default Latent Deep Ensemble 0.0
PP MMD (grid) Credit Default Latent Linear 0.044
PP MMD (grid) Credit Default Latent MLP 0.0
PP MMD (grid) GMSC DICE Deep Ensemble 0.0
PP MMD (grid) GMSC DICE Linear 0.0
PP MMD (grid) GMSC DICE MLP 0.004
PP MMD (grid) GMSC  Generic ( =0.5) Deep Ensemble 0.002
PP MMD (grid) GMSC  Generic ( =0.5) Linear 0.0
PP MMD (grid) GMSC  Generic ( =0.5) MLP 0.0
PP MMD (grid) GMSC Greedy Deep Ensemble 0.0
PP MMD (grid) GMSC Greedy Linear 0.0
PP MMD (grid) GMSC Greedy MLP 0.0
PP MMD (grid) GMSC Latent Deep Ensemble 0.0
PP MMD (grid) GMSC Latent Linear 0.0
PP MMD (grid) GMSC Latent MLP 0.03
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D.3. DETAILED RESULTS: MITIGATION

D.3.1. LINE CHARTS

The evolution of the evaluation metrics over the course of the experiment is shown
for different datasets in Figure D.15 to Figure D.21.

D.3.2. ERROR BAR CHARTS

The evaluation metrics at the end of the experiment are shown for different datasets
in Figure D.22 to Figure D.28.

D.3.3. STATISTICAL SIGNIFICANCE

Table D.3 presents the tests for statistical significance of the estimated MMD met-
rics.

Table D.3. Tests for statistical significance of the estimated MMD metrics using

mitigation strategies.

significance level & = 0.05 in bold. Data: Synthetic.

We have highlighted p-values smaller than the

Metric Data Generator Model p-value
MMD Circles ClapROAR  Deep Ensemble 0.984
MMD Circles ClapROAR Linear 1.0
MMD Circles ClapROAR MLP 0.992
MMD Circles  Generic ( =0.5) Deep Ensemble 0.99
MMD Circles  Generic ( =0.5) Linear 1.0
MMD Circles  Generic ( =0.5) MLP 0.994
MMD Circles  Generic ( =0.9) Deep Ensemble 0.996
MMD Circles Generic ( =0.9) Linear 1.0
MMD Circles  Generic ( =0.9) MLP 0.992
MMD Circles Gravitational Deep Ensemble 0.998
MMD Circles Gravitational Linear 1.0
MMD Circles Gravitational MLP 0.998
MMD Circles Latent Deep Ensemble 1.0
MMD Circles Latent Linear 1.0
MMD Circles Latent MLP 1.0
MMD Linearly Separable ClapROAR Deep Ensemble 0.0
MMD Linearly Separable ClapROAR Linear 0.0
MMD Linearly Separable ClapROAR MLP 0.0
MMD Linearly Separable Generic ( =0.5) Deep Ensemble 0.0
MMD Linearly Separable Generic ( =0.5) Linear 0.0
MMD Linearly Separable Generic ( =0.5) MLP 0.0
MMD Linearly Separable Generic ( =0.9) Deep Ensemble 0.0

Continued below.
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Metric Data Generator Model p-value
MMD Linearly Separable Generic ( =0.9) Linear 0.0
MMD Linearly Separable Generic ( =0.9) MLP 0.0
MMD Linearly Separable Gravitational Deep Ensemble 0.05
MMD Linearly Separable Gravitational Linear 0.092
MMD Linearly Separable Gravitational MLP 0.078
MMD Linearly Separable Latent Deep Ensemble 0.724
MMD Linearly Separable Latent Linear 0.75
MMD Linearly Separable Latent MLP 0.742
MMD Moons ClapROAR  Deep Ensemble 0.0
MMD Moons ClapROAR Linear 0.0
MMD Moons ClapROAR MLP 0.0
MMD Moons  Generic ( =0.5) Deep Ensemble 0.0
MMD Moons  Generic ( =0.5) Linear 0.0
MMD Moons  Generic ( =0.5) MLP 0.0
MMD Moons  Generic ( =0.9) Deep Ensemble 0.0
MMD Moons  Generic ( =0.9) Linear 0.0
MMD Moons  Generic ( =0.9) MLP 0.0
MMD Moons Gravitational Deep Ensemble 0.0
MMD Moons Gravitational Linear 0.0
MMD Moons Gravitational MLP 0.0
MMD Moons Latent Deep Ensemble 0.0
MMD Moons Latent Linear 0.0
MMD Moons Latent MLP 0.0
MMD Overlapping ClapROAR  Deep Ensemble 0.0
MMD Overlapping ClapROAR Linear 0.0
MMD Overlapping ClapROAR MLP 0.0
MMD Overlapping  Generic ( 0 5) Deep Ensemble 0.0
MMD Overlapping  Generic ( =0.5) Linear 0.0
MMD Overlapping  Generic ( =0. 5) MLP 0.0
MMD Overlapping  Generic ( =0.9) Deep Ensemble 0.0
MMD Overlapping  Generic ( =0.9) Linear 0.0
MMD Overlapping  Generic ( =0.9) MLP 0.0
MMD Overlapping Gravitational Deep Ensemble 0.0
MMD Overlapping Gravitational Linear 0.0
MMD Overlapping Gravitational MLP 0.0
MMD Overlapping Latent Deep Ensemble 0.0
MMD Overlapping Latent Linear 0.0
MMD Overlapping Latent MLP 0.0
PP MMD Circles ClapROAR  Deep Ensemble 0.998
PP MMD Circles ClapROAR Linear 0.996
PP MMD Circles ClapROAR MLP 0.998
PP MMD Circles Generic ( =0.5) Deep Ensemble 0.998
PP MMD Circles  Generic ( =0.5) Linear 0.8

Continued below.
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Metric Data Generator Model p-value
PP MMD Circles  Generic ( =0.5) MLP 1.0
PP MMD Circles  Generic (=0.9) Deep Ensemble 0.998
PP MMD Circles  Generic ( =0.9) Linear 0.996
PP MMD Circles  Generic ( =0.9) MLP 1.0
PP MMD Circles Gravitational Deep Ensemble 0.978
PP MMD Circles Gravitational Linear 0.0
PP MMD Circles Gravitational MLP 0.986
PP MMD Circles Latent Deep Ensemble 1.0
PP MMD Circles Latent Linear 0.0
PP MMD Circles Latent MLP 0.998
PP MMD Linearly Separable ClapROAR  Deep Ensemble 0.962
PP MMD Linearly Separable ClapROAR Linear 0.916
PP MMD Linearly Separable ClapROAR MLP 0.958
PP MMD Linearly Separable Generic ( O 5) Deep Ensemble 0.922
PP MMD Linearly Separable Generic ( =0.5) Linear 0.0
PP MMD Linearly Separable Generic ( =0. 5) MLP 0.916
PP MMD Linearly Separable Generic ( =0.9) Deep Ensemble 0.968
PP MMD  Linearly Separable Generic ( =0.9) Linear 0.376
PP MMD Linearly Separable Generic ( =0.9) MLP 0.968
PP MMD  Linearly Separable Gravitational Deep Ensemble 0.976
PP MMD Linearly Separable Gravitational Linear 0.904
PP MMD Linearly Separable Gravitational MLP 0.982
PP MMD Linearly Separable Latent Deep Ensemble 0.862
PP MMD Linearly Separable Latent Linear 0.428
PP MMD Linearly Separable Latent MLP 0.83
PP MMD Moons ClapROAR Deep Ensemble 0.966
PP MMD Moons ClapROAR Linear 0.462
PP MMD Moons ClapROAR MLP 0.956
PP MMD Moons  Generic ( O 5) Deep Ensemble 0.822
PP MMD Moons  Generic ( =0.5) Linear 0.0
PP MMD Moons  Generic ( =0. 5) MLP 0.812
PP MMD Moons  Generic ( =0.9) Deep Ensemble 0.818
PP MMD Moons  Generic ( =0.9) Linear 0.086
PP MMD Moons  Generic ( =0.9) MLP 0.87
PP MMD Moons Gravitational Deep Ensemble  0.9775
PP MMD Moons Gravitational Linear 0.446
PP MMD Moons Gravitational MLP 0.984
PP MMD Moons Latent Deep Ensemble 0.922
PP MMD Moons Latent Linear 0.008
PP MMD Moons Latent MLP 0.94
PP MMD Overlapping ClapROAR  Deep Ensemble 0.46
PP MMD Overlapping ClapROAR Linear 0.178
PP MMD Overlapping ClapROAR MLP 0.486

Continued below.




190 D. SUPPLEMENTARY MATERIAL FOR CHAPTER 3

Metric Data Generator Model p-value

PP MMD Overlapping Generic ( =0.5) Deep Ensemble 0.0

PP MMD Overlapping  Generic ( =0.5) Linear 0.0

PP MMD Overlapping  Generic ( =0. 5) MLP 0.004

PP MMD Overlapping Generic ( =0.9) Deep Ensemble 0.122

PP MMD Overlapping  Generic ( =0.9) Linear 0.066

PP MMD Overlapping  Generic ( =0.9) MLP 0.13

PP MMD Overlapping Gravitational Deep Ensemble 0.514

PP MMD Overlapping Gravitational Linear 0.156

PP MMD Overlapping Gravitational MLP 0.564

PP MMD Overlapping Latent Deep Ensemble 0.048

PP MMD Overlapping Latent Linear 0.006

PP MMD Overlapping Latent MLP 0.046

PP MMD (grid) Circles ClapROAR  Deep Ensemble 0.984
PP MMD (grid) Circles ClapROAR Linear 0.996
PP MMD (grid) Circles ClapROAR MLP 0.99
PP MMD (grid) Circles  Generic ( 0 5) Deep Ensemble 0.886
PP MMD (grid) Circles  Generic ( =0.5) Linear 0.814
PP MMD (grid) Circles  Generic ( =0. 5) MLP 0.814
PP MMD (grid) Circles Generic ( =0.9) Deep Ensemble 0.84
PP MMD (grid) Circles  Generic ( =0.9) Linear 0.988
PP MMD (grid) Circles  Generic ( =0.9) MLP 0.932
PP MMD (grid) Circles Gravitational Deep Ensemble 0.55
PP MMD (grid) Circles Gravitational Linear 0.0
PP MMD (grid) Circles Gravitational MLP 0.406
PP MMD (grid) Circles Latent Deep Ensemble 0.996
PP MMD (grid) Circles Latent Linear 0.0
PP MMD (grid) Circles Latent MLP 0.99
PP MMD (grid) Linearly Separable ClapROAR  Deep Ensemble 0.0
PP MMD (grid) Linearly Separable ClapROAR Linear 0.006
PP MMD (grid) Linearly Separable ClapROAR MLP 0.0
PP MMD (grid) Linearly Separable Generic ( =0.5) Deep Ensemble 0.0
PP MMD (grid) Linearly Separable Generic ( =0.5) Linear 0.0
PP MMD (grid) Linearly Separable Generic ( =0.5) MLP 0.0
PP MMD (grid) Linearly Separable Generic (=0.9) Deep Ensemble 0.0
PP MMD (grid) Linearly Separable Generic ( =0.9) Linear 0.0
PP MMD (grid) Linearly Separable Generic ( =0.9) MLP 0.0
PP MMD (grid) Linearly Separable Gravitational Deep Ensemble 0.408
PP MMD (grid) Linearly Separable Gravitational Linear 0.342
PP MMD (grid) Linearly Separable Gravitational MLP 0.668
PP MMD (grid) Linearly Separable Latent Deep Ensemble 0.0
PP MMD (grid) Linearly Separable Latent Linear 0.0
PP MMD (grid) Linearly Separable Latent MLP 0.0
PP MMD (grid) Moons ClapROAR Deep Ensemble 0.0

Continued below.
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Metric Data Generator Model p-value
PP MMD (grid) Moons ClapROAR Linear 0.458
PP MMD (grid) Moons ClapROAR MLP 0.004
PP MMD (grid) Moons  Generic ( O 5) Deep Ensemble 0.0
PP MMD (grid) Moons  Generic ( =0.5) Linear 0.0
PP MMD (grid) Moons  Generic ( =0. 5) MLP 0.016
PP MMD (grid) Moons Generic ( =0.9) Deep Ensemble 0.006
PP MMD (grid) Moons  Generic ( =0.9) Linear 0.09
PP MMD (grid) Moons  Generic ( =0.9) MLP 0.03
PP MMD (grid) Moons Gravitational Deep Ensemble 0.4
PP MMD (grid) Moons Gravitational Linear 0.456
PP MMD (grid) Moons Gravitational MLP 0.426
PP MMD (grid) Moons Latent Deep Ensemble 0.344
PP MMD (grid) Moons Latent Linear 0.008
PP MMD (grid) Moons Latent MLP 0.114
PP MMD (grid) Overlapping ClapROAR  Deep Ensemble  0.4075
PP MMD (grid) Overlapping ClapROAR Linear 0.256
PP MMD (grid) Overlapping ClapROAR MLP 0.298
PP MMD (grid) Overlapping  Generic ( 0 5) Deep Ensemble 0.002
PP MMD (grid) Overlapping  Generic ( =0.5) Linear 0.0
PP MMD (grid) Overlapping  Generic ( =0. 5) MLP 0.0
PP MMD (grid) Overlapping Generic ( =0.9) Deep Ensemble 0.154
PP MMD (grid) Overlapping  Generic ( =0.9) Linear 0.104
PP MMD (grid) Overlapping  Generic ( =0.9) MLP 0.116
PP MMD (grid) Overlapping Gravitational Deep Ensemble 0.356
PP MMD (grid) Overlapping Gravitational Linear 0.27
PP MMD (grid) Overlapping Gravitational MLP 0.344
PP MMD (grid) Overlapping Latent Deep Ensemble 0.324
PP MMD (grid) Overlapping Latent Linear 0.01
PP MMD (grid) Overlapping Latent MLP 0.204

Table D.4 presents the tests for statistical significance of the estimated MMD met-
rics.

Table D.4. Tests for statistical significance of the estimated MMD metrics using
mitigation strategies. We have highlighted p-values smaller than the
significance level @ = 0.05 in bold. Data: Real-World.

Metric Data Generator Model p-value
MMD Cal Housing ClapROAR  Deep Ensemble 0.0
MMD Cal Housing ClapROAR Linear 0.0
MMD Cal Housing ClapROAR MLP 0.0
MMD Cal Housing Generic ( =0.5) Deep Ensemble 0.0
MMD Cal Housing  Generic ( =0.5) Linear 0.0

Continued below.
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Metric Data Generator Model p-value
MMD Cal Housing  Generic ( =0.5) MLP 0.0
MMD Cal Housing  Generic (=0.9) Deep Ensemble 0.0
MMD Cal Housing  Generic ( =0.9) Linear 0.0
MMD Cal Housing  Generic ( =0.9) MLP 0.0
MMD Cal Housing Gravitational Deep Ensemble 0.0
MMD Cal Housing Gravitational Linear 0.0
MMD Cal Housing Gravitational MLP 0.0
MMD Cal Housing Latent Deep Ensemble 0.0
MMD Cal Housing Latent Linear 0.0
MMD Cal Housing Latent MLP 0.0
MMD  Credit Default ClapROAR Deep Ensemble 1.0
MMD  Credit Default ClapROAR Linear 1.0
MMD  Credit Default ClapROAR MLP 1.0
MMD  Credit Default  Generic ( 0.5) Deep Ensemble 1.0
MMD  Credit Default  Generic ( =0.5) Linear 1.0
MMD  Credit Default  Generic ( =0. 5) MLP 1.0
MMD  Credit Default  Generic ( =0.9) Deep Ensemble 1.0
MMD  Credit Default  Generic ( =0.9) Linear 1.0
MMD  Credit Default Generic ( =0.9) MLP 1.0
MMD  Credit Default Gravitational Deep Ensemble 0.0
MMD  Credit Default Gravitational Linear 0.0
MMD  Credit Default Gravitational MLP 0.0
MMD  Credit Default Latent Deep Ensemble 0.0
MMD  Credit Default Latent Linear 0.8
MMD  Credit Default Latent MLP 0.0
MMD GMSC ClapROAR Deep Ensemble 0.15
MMD GMSC ClapROAR Linear 0.0
MMD GMSC ClapROAR MLP 0.214
MMD GMSC  Generic ( 0.5) Deep Ensemble 0.938
MMD GMSC  Generic ( =0.5) Linear 0.856
MMD GMSC  Generic ( =0. 5) MLP 0.932
MMD GMSC  Generic ( =0.9) Deep Ensemble 0.758
MMD GMSC  Generic ( =0.9) Linear 0.004
MMD GMSC  Generic ( =0.9) MLP 0.93
MMD GMSC Gravitational Deep Ensemble 0.0
MMD GMSC Gravitational Linear 0.0
MMD GMSC Gravitational MLP 0.0
MMD GMSC Latent Deep Ensemble 0.0
MMD GMSC Latent Linear 0.0
MMD GMSC Latent MLP 0.0
PP MMD Cal Housing ClapROAR  Deep Ensemble 0.0
PP MMD Cal Housing ClapROAR Linear 0.0
PP MMD Cal Housing ClapROAR MLP 0.0

Continued below.
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Metric Data Generator Model p-value
PP MMD Cal Housing  Generic ( =0.5) Deep Ensemble 0.0
PP MMD Cal Housing  Generic ( =0.5) Linear 0.0
PP MMD Cal Housing  Generic ( =0. 5) MLP 0.0
PP MMD Cal Housing Generic ( =0.9) Deep Ensemble 0.0
PP MMD Cal Housing  Generic ( =0.9) Linear 0.0
PP MMD Cal Housing  Generic ( =0.9) MLP 0.0
PP MMD Cal Housing Gravitational Deep Ensemble 0.0
PP MMD Cal Housing Gravitational Linear 0.0
PP MMD Cal Housing Gravitational MLP 0.0
PP MMD Cal Housing Latent Deep Ensemble 0.0
PP MMD Cal Housing Latent Linear 0.0
PP MMD Cal Housing Latent MLP 0.0
PP MMD  Credit Default ClapROAR Deep Ensemble 0.0
PP MMD  Credit Default ClapROAR Linear 0.0
PP MMD  Credit Default ClapROAR MLP 0.0
PP MMD  Credit Default Generic ( =0.5) Deep Ensemble 0.0
PP MMD  Credit Default  Generic ( =0.5) Linear 0.0
PP MMD  Credit Default  Generic ( =0.5) MLP 0.0
PP MMD  Credit Default Generic ( =0.9) Deep Ensemble 0.0
PP MMD  Credit Default Generic ( =0.9) Linear 0.0
PP MMD  Credit Default  Generic ( =0.9) MLP 0.0
PP MMD  Credit Default Gravitational Deep Ensemble 0.0
PP MMD  Credit Default Gravitational Linear 0.0
PP MMD  Credit Default Gravitational MLP 0.0
PP MMD  Credit Default Latent Deep Ensemble 0.0
PP MMD  Credit Default Latent Linear 0.0
PP MMD  Credit Default Latent MLP 0.0
PP MMD GMSC ClapROAR  Deep Ensemble 0.0
PP MMD GMSC ClapROAR Linear 0.0
PP MMD GMSC ClapROAR MLP 0.0
PP MMD GMSC  Generic ( =0.5) Deep Ensemble 0.0
PP MMD GMSC  Generic ( =0.5) Linear 0.0
PP MMD GMSC  Generic ( =0.5) MLP 0.0
PP MMD GMSC  Generic ( =0.9) Deep Ensemble 0.0
PP MMD GMSC  Generic ( =0.9) Linear 0.0
PP MMD GMSC  Generic ( =0.9) MLP 0.0
PP MMD GMSC Gravitational Deep Ensemble 0.0
PP MMD GMSC Gravitational Linear 0.0
PP MMD GMSC Gravitational MLP 0.0
PP MMD GMSC Latent Deep Ensemble 0.0
PP MMD GMSC Latent Linear 0.0
PP MMD GMSC Latent MLP 0.0
PP MMD (grid) Cal Housing ClapROAR  Deep Ensemble 0.044

Continued below.
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Metric Data Generator Model p-value
PP MMD (grid) Cal Housing ClapROAR Linear 0.004
PP MMD (grid) Cal Housing ClapROAR MLP 0.012
PP MMD (grid) Cal Housing  Generic ( =0.5) Deep Ensemble 0.0
PP MMD (grid) Cal Housing Generic ( =0.5) Linear 0.0
PP MMD (grid) Cal Housing Generic ( =0.5) MLP 0.0
PP MMD (grid) Cal Housing Generic ( =0.9) Deep Ensemble 0.002
PP MMD (grid) Cal Housing  Generic ( =0.9) Linear 0.0
PP MMD (grid) Cal Housing  Generic ( =0.9) MLP 0.0
PP MMD (grid) Cal Housing Gravitational Deep Ensemble 0.0
PP MMD (grid) Cal Housing Gravitational Linear 0.014
PP MMD (grid) Cal Housing Gravitational MLP  0.0625
PP MMD (grid) Cal Housing Latent Deep Ensemble 0.0
PP MMD (grid) Cal Housing Latent Linear 0.002
PP MMD (grid) Cal Housing Latent MLP 0.0
PP MMD (grid) Credit Default ClapROAR  Deep Ensemble 0.0
PP MMD (grid) Credit Default ClapROAR Linear 0.0
PP MMD (grid) Credit Default ClapROAR MLP 0.0
PP MMD (grid) Credit Default Generic ( =0.5) Deep Ensemble 0.0
PP MMD (grid) Credit Default Generic ( =0.5) Linear 0.0
PP MMD (grid) Credit Default Generic ( =0.5) MLP 0.0
PP MMD (grid) Credit Default Generic ( =0.9) Deep Ensemble 0.0
PP MMD (grid) Credit Default Generic ( =0.9) Linear 0.0
PP MMD (grid) Credit Default Generic ( =0.9) MLP 0.0
PP MMD (grid) Credit Default Gravitational Deep Ensemble 0.0
PP MMD (grid) Credit Default Gravitational Linear 0.0
PP MMD (grid) Credit Default Gravitational MLP 0.0
PP MMD (grid) Credit Default Latent Deep Ensemble 0.0
PP MMD (grid) Credit Default Latent Linear 0.078
PP MMD (grid) Credit Default Latent MLP 0.0
PP MMD (grid) GMSC ClapROAR  Deep Ensemble 0.0
PP MMD (grid) GMSC ClapROAR Linear 0.0
PP MMD (grid) GMSC ClapROAR MLP 0.0
PP MMD (grid) GMSC  Generic ( =0.5) Deep Ensemble 0.0
PP MMD (grid) GMSC  Generic ( =0.5) Linear 0.0
PP MMD (grid) GMSC  Generic ( =0.5) MLP 0.0
PP MMD (grid) GMSC  Generic ( =0.9) Deep Ensemble 0.0
PP MMD (grid) GMSC  Generic ( =0.9) Linear 0.0
PP MMD (grid) GMSC  Generic ( =0.9) MLP 0.0
PP MMD (grid) GMSC Gravitational Deep Ensemble 0.0
PP MMD (grid) GMSC Gravitational Linear 0.0
PP MMD (grid) GMSC Gravitational MLP 0.0
PP MMD (grid) GMSC Latent Deep Ensemble 0.0
PP MMD (grid) GMSC Latent Linear 0.0
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Metric Data Generator Model p-value
PP MMD (grid) GMSC Latent MLP 0.0
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Figure D.15. Evolution of evaluation metrics
Data: California Housing.
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Figure D.16.
Data: Circles.
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Figure D.17. Evolution of evaluation metrics over the course of the experiment.
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D.4. DETAILED RESULTS:. MITIGATION WITH LATENT

SPACE SEARCH

D.4.1. LINE CHARTS

The evolution of the evaluation metrics over the course of the experiment is shown
for different datasets in Figure D.29 to Figure D.32.

D.4.2. ERROR BAR CHARTS

The evaluation metrics at the end of the experiment are shown for different datasets
in Figure D.33 to Figure D.36.

D.4.3. STATISTICAL SIGNIFICANCE

Table D.5 presents the tests for statistical significance of the estimated MMD met-

rics.

Table D.5. Tests for statistical significance of the estimated MMD metrics using
mitigation strategies with Latent Space Search. We have highlighted
p-values smaller than the significance level a« = 0.05 in bold.

Metric Data Generator Model p-value
MMD Circles ClapROAR Deep Ensemble 1.0
MMD Circles ClapROAR Linear 0.994
MMD Circles ClapROAR MLP 1.0
MMD Circles  Gravitational Deep Ensemble 0.998
MMD Circles  Gravitational Linear 1.0
MMD Circles  Gravitational MLP 1.0
MMD Circles Latent ( =0.5) Deep Ensemble 1.0
MMD Circles Latent ( =0.5) Linear 0.996
MMD Circles Latent ( =0.5) MLP 1.0
MMD Circles Latent ( =0.9) Deep Ensemble 1.0
MMD Circles Latent ( =0.9) Linear 0.996
MMD Circles Latent ( =0.9) MLP 1.0
MMD Linearly Separable ClapROAR  Deep Ensemble 0.334
MMD Linearly Separable ClapROAR Linear 0.866
MMD Linearly Separable ClapROAR MLP 0.168
MMD Linearly Separable  Gravitational Deep Ensemble 0.38
MMD Linearly Separable  Gravitational Linear 0.82
MMD Linearly Separable  Gravitational MLP 0.0
MMD Linearly Separable Latent ( =0.5) Deep Ensemble 0.0
MMD Linearly Separable Latent ( =0.5) Linear 0.892

Continued below.
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Metric Data Generator Model p-value
MMD Linearly Separable Latent ( =0.5) MLP 0.126
MMD Linearly Separable Latent ( =0.9) Deep Ensemble 0.0
MMD Linearly Separable Latent ( =0.9) Linear 0.896
MMD Linearly Separable Latent ( =0.9) MLP 0.0
MMD Moons ClapROAR Deep Ensemble 0.0
MMD Moons ClapROAR Linear 0.0
MMD Moons ClapROAR MLP 0.0
MMD Moons  Gravitational Deep Ensemble 0.0
MMD Moons  Gravitational Linear 0.0
MMD Moons  Gravitational MLP 0.0
MMD Moons Latent ( =0.5) Deep Ensemble 0.0
MMD Moons Latent ( =0.5) Linear 0.0
MMD Moons Latent ( =0.5) MLP 0.0
MMD Moons Latent ( =0.9) Deep Ensemble 0.0
MMD Moons Latent ( =0.9) Linear 0.0
MMD Moons Latent ( =0.9) MLP 0.0
MMD Overlapping ClapROAR Deep Ensemble 0.0
MMD Overlapping ClapROAR Linear 0.0
MMD Overlapping ClapROAR MLP 0.0
MMD Overlapping  Gravitational Deep Ensemble 0.0
MMD Overlapping  Gravitational Linear 0.0
MMD Overlapping  Gravitational MLP 0.0
MMD Overlapping Latent ( =0.5) Deep Ensemble 0.0
MMD Overlapping Latent ( =0.5) Linear 0.0
MMD Overlapping Latent ( =0.5) MLP 0.0
MMD Overlapping Latent ( =0.9) Deep Ensemble 0.0
MMD Overlapping Latent ( =0.9) Linear 0.0
MMD Overlapping Latent ( =0.9) MLP 0.0
PP MMD Circles ClapROAR Deep Ensemble 0.998
PP MMD Circles ClapROAR Linear 0.0
PP MMD Circles ClapROAR MLP 1.0
PP MMD Circles  Gravitational Deep Ensemble 1.0
PP MMD Circles  Gravitational Linear 0.0
PP MMD Circles  Gravitational MLP 1.0
PP MMD Circles Latent ( =0.5) Deep Ensemble 0.998
PP MMD Circles Latent ( ) Linear 0.0
PP MMD Circles Latent ( =0.5) MLP  0.9975
PP MMD Circles Latent ( =0.9) Deep Ensemble 0.998
PP MMD Circles Latent ( ) Linear 0.0
PP MMD Circles Latent ( =0.9) MLP 0.998
PP MMD Linearly Separable ClapROAR  Deep Ensemble 0.698
PP MMD Linearly Separable ClapROAR Linear 0.094
PP MMD Linearly Separable ClapROAR MLP 0.826

Continued below.
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Metric Data Generator Model p-value

PP MMD Linearly Separable  Gravitational Deep Ensemble 0.616

PP MMD Linearly Separable  Gravitational Linear 0.096

PP MMD Linearly Separable  Gravitational MLP 0.962

PP MMD Linearly Separable Latent ( =0.5) Deep Ensemble 0.948

PP MMD Linearly Separable Latent ( =0.5) Linear 0.094

PP MMD Linearly Separable Latent ( =0.5) MLP 0.85

PP MMD Linearly Separable Latent ( =0.9) Deep Ensemble 0.96

PP MMD Linearly Separable Latent ( =0.9) Linear 0.072

PP MMD Linearly Separable Latent ( =0.9) MLP 0.966

PP MMD Moons ClapROAR Deep Ensemble 0.962

PP MMD Moons ClapROAR Linear 0.134

PP MMD Moons ClapROAR MLP 0.005

PP MMD Moons  Gravitational Deep Ensemble 0.966

PP MMD Moons  Gravitational Linear  0.2075

PP MMD Moons  Gravitational MLP 0.01

PP MMD Moons Latent ( =0.5) Deep Ensemble  0.9075

PP MMD Moons Latent ( =0.5) Linear 0.0

PP MMD Moons Latent ( =0.5) MLP 0.006

PP MMD Moons Latent ( =0.9) Deep Ensemble 0.93

PP MMD Moons Latent ( =0.9) Linear  0.0275

PP MMD Moons Latent ( =0.9) MLP 0.002

PP MMD Overlapping ClapROAR  Deep Ensemble 0.412

PP MMD Overlapping ClapROAR Linear 0.13

PP MMD Overlapping ClapROAR MLP 0.34

PP MMD Overlapping  Gravitational Deep Ensemble 0.544

PP MMD Overlapping  Gravitational Linear 0.238

PP MMD Overlapping  Gravitational MLP 0.662

PP MMD Overlapping Latent ( =0.5) Deep Ensemble 0.046

PP MMD Overlapping Latent ( =0.5) Linear 0.0

PP MMD Overlapping Latent ( =0.5) MLP 0.07

PP MMD Overlapping Latent ( =0.9) Deep Ensemble 0.196

PP MMD Overlapping Latent ( =0.9) Linear 0.046

PP MMD Overlapping Latent ( =0.9) MLP 0.132

PP MMD (grid) Circles ClapROAR  Deep Ensemble 0.994
PP MMD (grid) Circles ClapROAR Linear 0.0
PP MMD (grid) Circles ClapROAR MLP 0.996
PP MMD (grid) Circles  Gravitational Deep Ensemble 0.992
PP MMD (grid) Circles  Gravitational Linear 0.0
PP MMD (grid) Circles  Gravitational MLP 0.996
PP MMD (grid) Circles Latent ( =0.5) Deep Ensemble 0.998
PP MMD (grid) Circles Latent ( ) Linear 0.0
PP MMD (grid) Circles Latent ( =0.5) MLP  0.9925
PP MMD (grid) Circles Latent ( ) Deep Ensemble 0.994

Continued below.
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Metric Data Generator Model p-value
PP MMD (grid) Circles Latent ( =0.9) Linear 0.0
PP MMD (grid) Circles Latent ( =0.9) MLP 0.988
PP MMD (grid) Linearly Separable ClapROAR  Deep Ensemble 0.0
PP MMD (grid) Linearly Separable ClapROAR Linear 0.0
PP MMD (grid) Linearly Separable ClapROAR MLP 0.0
PP MMD (grid) Linearly Separable  Gravitational Deep Ensemble 0.0
PP MMD (grid) Linearly Separable  Gravitational Linear 0.0
PP MMD (grid) Linearly Separable  Gravitational MLP 0.0
PP MMD (grid) Linearly Separable Latent ( =0.5) Deep Ensemble 0.0
PP MMD (grid) Linearly Separable Latent ( ) Linear 0.0
PP MMD (grid) Linearly Separable Latent ( =0.5) MLP 0.0
PP MMD (grid) Linearly Separable Latent ( =0.9) Deep Ensemble 0.0
PP MMD (grid) Linearly Separable Latent ( ) Linear 0.0
PP MMD (grid) Linearly Separable Latent ( =0.9) MLP 0.044
PP MMD (grid) Moons ClapROAR  Deep Ensemble 0.128
PP MMD (grid) Moons ClapROAR Linear 0.072
PP MMD (grid) Moons ClapROAR MLP 0.0
PP MMD (grid) Moons  Gravitational Deep Ensemble 0.2
PP MMD (grid) Moons  Gravitational Linear  0.1525
PP MMD (grid) Moons  Gravitational MLP 0.0
PP MMD (grid) Moons Latent ( =0.5) Deep Ensemble 0.22
PP MMD (grid) Moons Latent ( ) Linear 0.0
PP MMD (grid) Moons Latent ( =0.5) MLP 0.0
PP MMD (grid) Moons Latent ( =0.9) Deep Ensemble 0.276
PP MMD (grid) Moons Latent ( ) Linear 0.035
PP MMD (grid) Moons Latent ( =0.9) MLP 0.002
PP MMD (grid) Overlapping ClapROAR Deep Ensemble 0.296
PP MMD (grid) Overlapping ClapROAR Linear 0.19
PP MMD (grid) Overlapping ClapROAR MLP 0.374
PP MMD (grid) Overlapping  Gravitational Deep Ensemble 0.446
PP MMD (grid) Overlapping  Gravitational Linear 0.324
PP MMD (grid) Overlapping  Gravitational MLP 0.518
PP MMD (grid) Overlapping Latent ( O 5) Deep Ensemble 0.344
PP MMD (grid) Overlapping Latent ( =0.5) Linear 0.004
PP MMD (grid) Overlapping Latent ( =0. 5) MLP 0.49
PP MMD (grid) Overlapping Latent ( =0.9) Deep Ensemble 0.362
PP MMD (grid) Overlapping Latent ( =0.9) Linear 0.052
PP MMD (grid) Overlapping Latent ( =0.9) MLP 0.412
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Due to its length, we make the supplementary appendix available separately, instead
of including it here. Specifically, the appendix can be found in the preprint of this
paper, which has been permanently archived here: https://arxiv.org/pdf/2312.106
48.
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paper, which has been permanently archived here: https://arxiv.org/abs/2601.162
05.
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SUPPLEMENTARY MATERIAL
FOR CHAPTER 6

In this section, we present additional experimental results that we did not include in
the body of the paper for the sake of brevity. We still choose to provide them as ad-
ditional substantiation of our arguments here. This section also contains additional
details concerning the experiment setup for our examples where applicable.

G.1. ARE NEURAL NETWORKS BORN WITH WORLD MAPS?

The initial feature matrix X™*™) is made up of n = 4,217 and m = 10 features.
We add a total of 490 random features to X to simulate the fact that not all features
ingested by Llama-2 are necessarily correlated with geographical coordinates. That
yields 500 features in total. The training subset contains 3,374 randomly drawn
samples, while the remaining 843 are held out for testing. The single hidden layer
of the untrained neural network has 400 neurons.

G.2. AUTOENCODERS AS ECONOMIC GROWTH
PREDICTORS

This is an additional example that we have not discuss in the body of the paper.
Here, we build forth on an application in Economics. However, we now seek to
not only predict economic growth from the yield curve, but also extract meaningful
features for downstream inference tasks. For this, we will use a neural network
architecture.
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G.2.1. DATA

To estimate economic growth, we will rely on a quarterly series of the real gross do-
mestic product (GDP) provided by the Federal Reserve Bank of St. Louis. The data
arrives in terms of levels of real GDP. In order to estimate growth, we transform the
data using log differences. Since our yield curve data is daily, we aggregate it to the
quarterly frequency by taking averages of daily yields for each maturity. We also
standardize yields since deep learning models tend to perform better with standard-
ized data (Michal S Gal 2019). Since COVID-19 was a substantial structural break
in the time series, we also filter out all observations after 2018.

G.2.2. MODEL

Using a simple autoencoder architecture, we let our model g, denote growth and
our conditional r, the matrix of aggregated Treasury yield rates at time ¢. Finally,
we let 6 denote our model parameters. Formally, we are interested in maximizing
the likelihood py(g;|r;).

The encoder consists of a single fully connected hidden layer with 32 neurons and a
hyperbolic tangent activation function. The bottleneck layer connecting the encoder
to the decoder, is a fully connected layer with 6 neurons. The decoder consists of two
fully connected layers, each with a hyperbolic tangent activation function: the first
layer consists of 32 neurons and the second layer will have the same dimension as
the input data. The output layer consists of a single neuron for our output variable,
g, We train the model over 1,000 epochs to minimize mean squared error loss using
the Adam optimizer (Kingma and Ba 2017).

The in-sample fit of the model is shown in the left chart of Figure G.1, which shows
actual GDP growth and fitted values from the autoencoder model. The model has
a large number of free parameters and captures the relationship between economic
growth and the yield curve reasonably well, as expected. Since our primary goal is
not out-of-sample prediction accuracy but feature extraction for inference, we use
all of the available data instead of reserving a hold-out set. As discussed above,
we also know that the relationship between economic growth and the yield curve is
characterized by two main factors: the level and the spread. Since the model itself
is fully characterized by its parameters, we would expect that these two important
factors are reflected somewhere in the latent parameter space.

G.2.3. LINEAR PROBE

While the loss function applies most direct pressure on layers near the final output
layer, any information useful for the downstream task first needs to pass through the
bottleneck layer (Alain and Bengio 2016). On a per-neuron basis, the pressure to
distill useful representation is therefore likely maximized there. Consequently, the
bottleneck layer activations seem like a natural place to start looking for compact,
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Figure G.1. The left chart shows the actual GDP growth and fitted values from the
autoencoder model. The right chart shows the observed average level
and spread of the yield curve (solid) along with the predicted values (in-
sample) from the linear probe based on the latent embeddings (dashed).

meaningful representations of distilled information. We compute and extract these
activations A, for all time periods t = 1,...,7. Next, we use a linear probe to
regress the observed yield curve factors on the latent embeddings. Let Y, denote the
vector containing the two factors of interest in time ¢: y, ; and y, ¢ for the level and
spread, respectively. Formally, we are interested in the following regression model:
P (Y| A;) where w denotes the regression parameters. We use Ridge regression with
A set to 0.1. Using the estimated regression parameters w, we then predict the yield
curve factors : Y, = 0’ A,.

The in-sample predictions of the probe are shown in the right chart of Figure G.1.
Solid lines show the observed yield curve factors over time, while dashed lines show
predicted values. We find that the latent embeddings predict the two yield curve
factors reasonably well, in particular the spread.

Did the neural network now learn an intrinsic understanding of the economic rela-
tionship between growth and the yield curve? To us, that would be too big of a
statement. Still, the current form of information distillation can be useful, even bey-
ond its intended use for monitoring models. For example, an interesting idea could
be to use the latent embeddings as features in a more traditional and interpretable
econometric model. To demonstrate this, let us consider a simple linear regression
model for GDP growth. We might be interested in understanding to what degree
economic growth in the past is associated with economic growth today. As we might
expect, linearly regressing economic growth on lagged growth, as in column (1) of
Table G.1, yields a statistically significant coefficient. However, this coefficient suf-
fers from confounding bias since there are many other confounding variables at play,
of which some may be readily observable and measurable, but others may not.

We e.g. already mentioned the relationship between interest rates and economic
growth. To account for that, while keeping our regression model as parsimonious as
possible, we could include the level and the spread of the US Treasury yield curve
as additional regressors. While this slightly changes the estimated magnitude of
the coefficient on lagged growth, the coefficients on the observed level and spread
are statistically insignificant (column (2) in Table G.1). This indicates that these
measures may be too crude to capture valuable information about the relationship
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between yields and economic growth. Because we have included two additional
regressors with little to no predictive power, the model fit as measured by the Bayes
Information Criterium (BIC) has actually deteriorated.

Column (3) of Table G.1 shows the effect of instead including one of the latent
embeddings that we recovered above in the regression model. In particular, we pick
the one latent embedding that we have found to exhibit the most significant effect
on the output variable in a separate regression of growth on all latent embeddings.
The estimated coefficient on this latent factor is small in magnitude, but statistically
significant. The overall model fit, as measured by the BIC has improved and the
magnitude of the coefficient on lagged growth has changed quite a bit. While this is
still a very incomplete toy model of economic growth, it appears that the compact
latent representation we recovered can be used in order to mitigate confounding
bias.

Table G.1. Regression output for various models.

GDP Growth
(1) (2) (3)
(Intercept) 0.004%** 0.002  0.004***

(0.001)  (0.002)  (0.001)
Lagged Growth 0.398%**  (.385%**  (,344%**
(0.087)  (0.089)  (0.088)

Spread 0.000
(0.001)
Level 0.000
(0.000)
Embedding 6 0.008*
(0.003)
Obs. 114 114 114
BIC -860.391 -857.429  -864.499
R? 0.158 0.168 0.203

G.3. LLMS FOR ECONOMIC SENTIMENT PREDICTION

G.3.1. LINEAR PROBES

Figure G.2 to Figure G.6 present average performance measures across folds for all
indicators each time for the train and test set. We report the correlation between
predictions and observed values (‘cor’), the mean directional accuracy (‘mda’), the
mean squared error (‘mse’) and the root mean squared error (‘rmse’). The model
depth—as indicated by the number of the layer—increases along the horizontal
axis.
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Figure G.7 to Figure G.11 present the same performance measures, also for the
baseline autoregressive model. Shaded areas show the variation across folds.

G6.3.2. SPARK OF ECONONOMIC UNDERSTANDING?

Below we present the 10 sentences in each category that were used to generate the
probe predictions plotted in Figure 6.4. In each case, the first 5 sentences were
composed by ourselves. The following 5 sentences were generated using ChatGPT
3.5 using the following prompt followed by the examples in each category:

“I will share 5 example sentences below that sound a bit like they are
about price deflation but are really about a deflation in the numbers
of doves. Please generate an additional 25 sentences that are similar.
Concatenate those sentences to the example string below, each time
separating a sentence using a semicolon (just follow the same format
I've used for the examples below). Please return only the concatenated
sentences, including the original 5 examples.

Here are the examples:”
This was followed up with the following prompt to generate additional sentences:

“Please generate X more sentences in the same manner and once again
return them in the same format. Do not recycle sentences you have

already generated, please.” u
All of the sentences were then passed through the linear probe for the CPI and sorted
in ascending or descending order depending on the context (inflation or deflation).
We then carefully inspected the list of sentences and manually selected 5 additional
sentences to concatenate to the 5 sentences we composed ourselves.

G.3.2.1. INFLATION/PRICES
The following sentences were used:

Consumer prices are at all-time highs.;Inflation is expected to rise
further.;The Fed is expected to raise interest rates to curb infla-
tion.;Excessively loose monetary policy is the cause of the inflation.;It
is essential to bring inflation back to target to avoid drifting into
hyperinflation territory.;Inflation is becoming a global phenomenon,
affecting economies across continents.;Inflation is reshaping the dy-
namics of international trade and competitiveness.;Inflationary woes
are prompting governments to reassess fiscal policies and spending
priorities.;Inflation is reshaping the landscape of economic indicators,
challenging traditional forecasting models.;The technology sector is not
immune to inflation, facing rising costs for materials and talent.
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G.3.2.2. INFLATION/BIRDS
The following sentences were used:

The number of hawks is at all-time highs.;Their levels are expected
to rise further.;The Federal Association of Birds is expected to raise
barriers of entry for hawks to bring their numbers back down to
the target level.;Excessively loose migration policy for hawks is the
likely cause of their numbers being so far above target.;It is essential
to bring the number of hawks back to target to avoid drifting into
hyper-hawk territory.;The unprecedented rise in hawk figures requires
a multi-pronged approach to wildlife management.;Environmental
agencies are grappling with the task of addressing the inflationary hawk
numbers through targeted interventions.;The burgeoning hawk figures
highlight the need for adaptive strategies to manage and maintain a
healthy avian community.;The unprecedented spike in hawk counts
highlights the need for adaptive and sustainable wildlife management
practices.;Conservationists advocate for proactive measures to prevent
further inflation in hawk numbers, safeguarding the delicate balance of
the avian ecosystem.

G.3.2.3. DEFLATION/PRICES

The following sentences were used:

n Consumer prices are at all-time lows.;Inflation is expected to fall
further.;The Fed is expected to lower interest rates to boost infla-
tion.;Excessively tight monetary policy is the cause of deflationary
pressures.;It is essential to bring inflation back to target to avoid drift-
ing into deflation territory.;The risk of deflation may increase during
periods of economic uncertainty.;Deflation can lead to a self-reinforcing
cycle of falling prices and reduced economic activity.;The deflationary
impact of reduced consumer spending can ripple through the entire
economy.;Falling real estate prices can contribute to deflation by
reducing household wealth and confidence.;The deflationary impact of
falling commodity prices can have ripple effects throughout the global
economy.

G.3.2.4. DEFLATION/BIRDS
The following sentences were used:

The number of doves is at all-time lows.;Their levels are expected to
fall further.;The Federal Association of Birds is expected to lower bar-
riers of entry for doves to bring their numbers back up to the target
level.;Excessively tight migration policy for doves is the likely cause of
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their numbers being so far below target.;Dovelation risks loom large as
the number of doves continues to dwindle.;The number of doves is ex-
periencing a significant decrease in recent years.;It is essential to bring
the numbers of doves back to target to avoid drifting into dovelation ter-
ritory.;A comprehensive strategy is needed to reverse the current dove
population decline.;Experts warn that without swift intervention, we
may witness a sustained decrease in dove numbers.

We think that this sort of manual, LLM-aided adversarial attack against another
LLM can potentially be scaled up to allow for rigorous testing, which we will turn
to next.
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Figure G.2. Average performance measures across folds plotted against model depth
(number of layer) for the CPI for the train and test set.
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Figure G.3. Average performance measures across folds plotted against model depth
(number of layer) for the PPI for the train and test set.
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Figure G.4. Average performance measures across folds plotted against model depth
(number of layer) for the UST (1 Mo) for the train and test set.
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Figure G.6. Average performance measures across folds plotted against model depth
(number of layer) for the UST (10 Yr) for the train and test set.
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Figure G.7. Average performance measures across folds plotted against model depth
(number of layer) for the CPI for the train and test set compared against
the baseline autoregressive model. Shaded areas show the variation
across folds.
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Figure G.8. Average performance measures across folds plotted against model depth
(number of layer) for the PPI for the train and test set compared against
the baseline autoregressive model.
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Figure G.9. Average performance measures across folds plotted against model depth
(number of layer) for the UST (1 Mo) for the train and test set com-
pared against the baseline autoregressive model. Shaded areas show
the variation across folds.
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Figure G.10. Average performance measures across folds plotted against model

depth (number of layer) for the UST (1 Yr) for the train and test
set compared against the baseline autoregressive model. Shaded areas
show the variation across folds.
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Figure G.11. Average performance measures across folds plotted against model

depth (number of layer) for the UST (10 Yr) for the train and test
set compared against the baseline autoregressive model. Shaded areas
show the variation across folds.
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G.4. TOWARD PARROT TESTS

In our experiments from Section Section 6.3.3, we considered the following hypo-
thesis tests as a minimum viable testing framework to assess if our probe results
(may) provide evidence for an actual ‘understanding’ of key economic relationships
learned purely from text:

Proposition G.1 (Parrot Test).

o HO (Null): The probe never predicts values that are statistically significantly
different from E[f(e)].

o H1 (Stochastic Parrots): The probe predicts values that are statistically signi-
ficantly different from E[f ()] for sentences related to the outcome of interest
and those that are independent (i.e. sentences in all categories).

o H2 (More than Mere Stochastic Parrots): The probe predicts values that are
statistically significantly different from E[f(e)] for sentences that are related to
the outcome variable (IP and DP), but not for sentences that are independent
of the outcome (IB and DB).

To be clear, if in such a test we did find substantial evidence in favour of rejecting
both HO and H1, this would not automatically imply that H2 is true. But to even
continue investigating, if based on having learned meaningful representation the
underlying LLM is more than just a parrot, it should be able to pass this simple
test.

In this particular case, Figure 6.4 demonstrates that we find some evidence to reject
HO but not HI for FOMC-RoBERTa. The median linear probe predictions for
sentences about inflation and deflation are indeed substantially higher and lower,
respectively than for random noise. Unfortunately, the same is true for sentences
about the inflation and deflation in the number of birds, albeit to a somewhat lower
degree. This finding holds for both inflation indicators and to a lesser degree also
for yields at different maturities, at least qualitatively.

We should note that the number of sentences in each category is very small here (10),
so the results in Figure 6.4 cannot be used to establish statistical significance. That
being said, even a handful of convincing counter-examples should be enough for
us to seriously question the claim, that results from linear probes provide evidence
in favor of real ‘understanding’. In fact, even a handful of sentences for which any
human annotator would easily arrive at the conclusion of independence, a prediction
by the probe in either direction casts doubt.
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G.5. CODE

All of the experiments were conducted on a MacBook Pro, 14-inch, 2023, with
an Apple M2 Pro chip and 16GB of RAM. Forward passes through the FOMC-
RoBERTa were run in parallel on 6 threads. All our code will be made publicly avail-
able. For the time being, an anonymized version of our code repository can be found
here: https://anonymous.4open.science/r/spurious_sentience/ README.md.
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