Appendix A — Publications
Artificial Intelligence, Trustworthy AI, Counterfactual Explanations, Algorithmic Recourse
Academic Research
Patrick Altmeyer, Aleksander Buszydlik, Arie Deursen, Cynthia C. S. Liem (2026). ‘Counterfactual Training: Teaching Models Plausible and Actionable Explanations’. In 2026 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). Available at: upcoming. (Chapter 5)
Aleksander Buszydlik, Patrick Altmeyer, Cynthia C. S. Liem, Roel Dobbe (2025). ‘Understanding the Affordances and Constraints of Explainable AI in Safety-Critical Contexts: A Case Study in Dutch Social Welfare’. In Electronic Government. EGOV 2025. Lecture Notes in Computer Science. Available at: https://link.springer.com/chapter/10.1007/978-3-032-02515-9_8
Karol Dobiczek, Patrick Altmeyer, Cynthia CS Liem (2025). ‘Natural Language Counterfactual Explanations in Financial Text Classification: A Comparison of Generators and Evaluation Metrics’. In Proceedings of the Fourth Workshop on Generation, Evaluation and Metrics (GEM\(^2\)), 958–972. Available at: https://aclanthology.org/2025.gem-1.75.pdf
Aleksander Buszydlik, Patrick Altmeyer, Cynthia C. S. Liem, Roel Dobbe (2024). ‘Grounding and Validation of Algorithmic Recourse in Real-World Contexts: A Systematized Literature Review’. Available at: https://openreview.net/pdf?id=oEmyoy5H5P
Patrick Altmeyer, Mojtaba Farmanbar, Arie van Deursen, Cynthia C. S. Liem (2024). ‘Faithful Model Explanations through Energy-Constrained Conformal Counterfactuals’. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence, 10829–10837, (38). DOI: https://doi.org/10.1609/aaai.v38i10.28956. (Chapter 4)
Patrick Altmeyer, Andrew M Demetriou, Antony Bartlett, Cynthia C. S. Liem (2024). ‘Position: Stop Making Unscientific AGI Performance Claims’. In International Conference on Machine Learning, 1222–1242. Available at: https://proceedings.mlr.press/v235/altmeyer24a.html. (Chapter 6)
Floris Hengst, Ralf Wolter, Patrick Altmeyer, Arda Kaygan (2024). ‘Conformal Intent Classification and Clarification for Fast and Accurate Intent Recognition’. In Findings of the Association for Computational Linguistics: NAACL 2024, 2412–2432. DOI: https://doi.org/10.18653/v1/2024.findings-naacl.156
Marc Agustí, Ignacio Vidal-Quadras Costa, Patrick Altmeyer (2023). ‘Deep vector autoregression for macroeconomic data’. In IFC Bulletins chapters, (59). Available at: https://www.bis.org/ifc/publ/ifcb59_39.pdf
Patrick Altmeyer, Giovan Angela, Aleksander Buszydlik, Karol Dobiczek, Arie van Deursen, Cynthia C. S. Liem (2023). ‘Endogenous Macrodynamics in Algorithmic Recourse’. In 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), 418–431. DOI: https://doi.org/10.1109/satml54575.2023.00036. (Chapter 3)
Patrick Altmeyer, Arie van Deursen, Cynthia C. S. Liem (2023). ‘Explaining Black-Box Models through Counterfactuals’. In Proceedings of the JuliaCon Conferences, 130, (1). DOI: https://doi.org/10.21105/jcon.00130. (Chapter 2)
Research Software
Patrick Altmeyer, contributors (2025). ‘CounterfactualExplanations.jl’. DOI: https://doi.org/10.5281/zenodo.8239378
Patrick Altmeyer, contributors (2024). ‘ConformalPrediction.jl’. DOI: https://doi.org/10.5281/zenodo.12799930
Patrick Altmeyer, contributors (2024). ‘LaplaceRedux.jl’. DOI: https://doi.org/10.5281/zenodo.13758044