Appendix B — Supervision
Artificial Intelligence, Trustworthy AI, Counterfactual Explanations, Algorithmic Recourse
The author of this dissertation supervised multiple bachelor’s and master’s students at TU Delft. He also mentored external students looking to contribute to open-source software as part of Julia Seasons of Contributions and Google Summer of Code.
B.1 Master’s Students
Aleksander Buszydlik (2024). ‘Finding Recourse for Algorithmic Recourse’. Available at: https://resolver.tudelft.nl/uuid:be47ad5a-5a4b-457c-b214-35c6c78cae36
Karol Dobiczek (2024). ‘Natural Language Counterfactual Explanations in Financial Text Classification’. Available at: https://resolver.tudelft.nl/uuid:66730110-d296-4a57-b382-e9a6cc0a4aa5
Ivor Zagorac (2024). ‘A Study on Counterfactual Explanations’. Available at: https://resolver.tudelft.nl/uuid:6e2c240c-03c6-4e0e-af2c-5d257e77c77c
Marit E. Radder (2024). ‘A counterfactual-based evaluation framework for machine learning models that use gene expression data’. Available at: https://resolver.tudelft.nl/uuid:4cf92f8f-2a4c-43e8-9746-2ff33ca65de5
B.2 Bachelor’s Students
Dimitar Nikolov (2024). ‘How Does Predictive Uncertainty Quantification Correlate with the Plausibility of Counterfactual Explanations’. Available at: https://resolver.tudelft.nl/uuid:b0ecc3fe-4454-4c44-a624-5d335d108634
Rithik Appachi Senthilkumar (2024). ‘Are Neural Networks Robust to Gradient-Based Adversaries Also More Explainable? Evidence from Counterfactuals’. Available at: https://resolver.tudelft.nl/uuid:47786bb4-ae24-4972-94a0-1bd18d756486
Giacomo Pezzali (2024). ‘Do Joint Energy-Based Models Produce More Plausible Counterfactual Explanations?’. Available at: https://resolver.tudelft.nl/uuid:afe2d50d-f4b3-403f-b0e7-a0b8ede96bb0
Ali Faruk Yücel (2024). ‘Metrics to Ascertain the Plausibility and Faithfulness of Counterfactual Explanations’. Available at: https://resolver.tudelft.nl/uuid:d80b688c-b0f6-4c88-a0a2-891d738f25d4
Ipek Iscan (2024). ‘Advancing Explainability in Black-Box Models’. Available at: https://resolver.tudelft.nl/uuid:e50c1cae-d579-405a-9089-86a0ca925086
Giovan Angela (2023). ‘Endogenous Macrodynamics in Algorithmic Recourse’. Available at: https://resolver.tudelft.nl/uuid:5023154a-53c6-44ca-9d09-1670ba0ded31
Aleksander Buszydlik (2022). ‘Quantifying the Endogenous Domain and Model Shifts Induced by the DiCE Generator’. Available at: https://resolver.tudelft.nl/uuid:cb0bf4ac-4055-489b-b768-e5b53ec6fa47
Karol Dobiczek (2022). ‘Quantifying the Endogenous Domain and Model Shifts Induced by the CLUE Recourse Generator’. Available at: https://resolver.tudelft.nl/uuid:6a249d72-9e1e-4e81-abdc-463260c7d1bc
B.3 External
Jorge Luiz Franco (2024). ‘JSoC: When Causality Meets Recourse’. Available at: https://www.taija.org/blog/posts/causal-recourse/
Pasquale Caterino (2024). ‘Google Summer of Code 2024 Final Report: Add support for Conformalized Bayes to ConformalPrediction.jl’. Available at: https://gist.github.com/pasq-cat/f25eebc492366fb6a4f428426f93f45f